Go to file
Varun Agrawal 66570469c5 fix working directory for python install target 2020-07-07 17:38:27 -04:00
.github Update trigger-python.yml 2020-06-09 17:45:20 -04:00
.settings
CppUnitLite Use GNUInstallDirs to make install destination directories configurable 2020-05-31 21:52:00 -04:00
cmake Improved paths and added checks 2020-07-05 21:57:18 -05:00
cython fix working directory for python install target 2020-07-07 17:38:27 -04:00
doc unhide doc section in PDF 2020-06-10 10:06:16 +02:00
docker/ubuntu-boost-tbb-eigen3
examples Reformatted some and use of auto 2020-05-09 19:08:31 -04:00
gtsam Merge remote-tracking branch 'origin/develop' into feature/frobeniusfactor 2020-07-06 22:58:23 -04:00
gtsam_unstable Add more documentation and clang-format 2020-06-20 09:45:24 +10:00
matlab Merge branch 'develop' into feature/python-plotting 2020-03-25 19:06:17 -04:00
tests Merge branch 'develop' of github.com:borglab/gtsam into feature/1dsfm 2020-06-29 20:05:56 -07:00
timing Importing Frobenius error factors from Shonan effort 2020-06-19 23:33:29 -04:00
wrap Fix wrap tests 2020-06-22 15:24:14 -04:00
.cproject
.gitignore
.project
.travis.python.sh update python build location in travis script 2020-07-04 20:42:15 -04:00
.travis.sh set CMAKE_VERBOSE_MAKEFILE flag to OFF 2020-06-17 15:02:24 -05:00
.travis.yml Set minimum supported numpy version to 1.11.0 (#366) 2020-06-23 16:08:44 -05:00
CMakeLists.txt fixed CYTHON_INSTALL_PATH cmake variable wrt cache 2020-07-01 14:36:16 -05:00
DEVELOP.md
GTSAM-Concepts.md
INSTALL.md
LICENSE
LICENSE.BSD
README.md
THANKS.md
USAGE.md
Using-GTSAM-EXPORT.md
appveyor.yml
gtsam.h Merge remote-tracking branch 'origin/develop' into feature/frobeniusfactor 2020-06-27 01:26:53 -04:00
gtsam_extra.cmake.in export cython install path so it can be picked up by other cmake projects 2020-06-22 16:47:37 -05:00
makestats.sh
package.xml

README.md

README - Georgia Tech Smoothing and Mapping Library

What is GTSAM?

GTSAM is a C++ library that implements smoothing and mapping (SAM) in robotics and vision, using Factor Graphs and Bayes Networks as the underlying computing paradigm rather than sparse matrices.

Platform Build Status
gcc/clang Build Status
MSVC Build status

On top of the C++ library, GTSAM includes wrappers for MATLAB & Python.

Quickstart

In the root library folder execute:

#!bash
$ mkdir build
$ cd build
$ cmake ..
$ make check (optional, runs unit tests)
$ make install

Prerequisites:

  • Boost >= 1.43 (Ubuntu: sudo apt-get install libboost-all-dev)
  • CMake >= 3.0 (Ubuntu: sudo apt-get install cmake)
  • A modern compiler, i.e., at least gcc 4.7.3 on Linux.

Optional prerequisites - used automatically if findable by CMake:

GTSAM 4 Compatibility

GTSAM 4 introduces several new features, most notably Expressions and a Python toolbox. We also deprecate some legacy functionality and wrongly named methods, but by default the flag GTSAM_ALLOW_DEPRECATED_SINCE_V4 is enabled, allowing anyone to just pull V4 and compile. To build the python toolbox, however, you will have to explicitly disable that flag.

Also, GTSAM 4 introduces traits, a C++ technique that allows optimizing with non-GTSAM types. That opens the door to retiring geometric types such as Point2 and Point3 to pure Eigen types, which we also do. A significant change which will not trigger a compile error is that zero-initializing of Point2 and Point3 is deprecated, so please be aware that this might render functions using their default constructor incorrect.

Wrappers

We provide support for MATLAB and Python wrappers for GTSAM. Please refer to the linked documents for more details.

The Preintegrated IMU Factor

GTSAM includes a state of the art IMU handling scheme based on

  • Todd Lupton and Salah Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions", TRO, 28(1):61-76, 2012. [link]

Our implementation improves on this using integration on the manifold, as detailed in

  • Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert, "Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors", Int. Conf. on Robotics and Automation (ICRA), 2014. [link]
  • Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, "IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation", Robotics: Science and Systems (RSS), 2015. [link]

If you are using the factor in academic work, please cite the publications above.

In GTSAM 4 a new and more efficient implementation, based on integrating on the NavState tangent space and detailed in this document, is enabled by default. To switch to the RSS 2015 version, set the flag GTSAM_TANGENT_PREINTEGRATION to OFF.

Additional Information

There is a GTSAM users Google group for general discussion.

Read about important GTSAM-Concepts here. A primer on GTSAM Expressions, which support (superfast) automatic differentiation, can be found on the GTSAM wiki on BitBucket.

See the INSTALL file for more detailed installation instructions.

GTSAM is open source under the BSD license, see the LICENSE and LICENSE.BSD files.

Please see the examples/ directory and the USAGE file for examples on how to use GTSAM.

GTSAM was developed in the lab of Frank Dellaert at the Georgia Institute of Technology, with the help of many contributors over the years, see THANKS.