243 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file testMarginals.cpp
 | |
|  * @brief 
 | |
|  * @author Richard Roberts
 | |
|  * @date May 14, 2012
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| // for all nonlinear keys
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| // for points and poses
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| 
 | |
| // for modeling measurement uncertainty - all models included here
 | |
| #include <gtsam/linear/NoiseModel.h>
 | |
| 
 | |
| // add in headers for specific factors
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/BearingRangeFactor.h>
 | |
| 
 | |
| #include <gtsam/nonlinear/Marginals.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| TEST(Marginals, planarSLAMmarginals) {
 | |
| 
 | |
|   // Taken from PlanarSLAMSelfContained_advanced
 | |
| 
 | |
|   // create keys for variables
 | |
|   Symbol x1('x',1), x2('x',2), x3('x',3);
 | |
|   Symbol l1('l',1), l2('l',2);
 | |
| 
 | |
|   // create graph container and add factors to it
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   /* add prior  */
 | |
|   // gaussian for prior
 | |
|   SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
 | |
|   Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
 | |
|   graph += PriorFactor<Pose2>(x1, priorMean, priorNoise);  // add the factor to the graph
 | |
| 
 | |
|   /* add odometry */
 | |
|   // general noisemodel for odometry
 | |
|   SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
 | |
|   Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | |
|   // create between factors to represent odometry
 | |
|   graph += BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise);
 | |
|   graph += BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise);
 | |
| 
 | |
|   /* add measurements */
 | |
|   // general noisemodel for measurements
 | |
|   SharedDiagonal measurementNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.2));
 | |
| 
 | |
|   // create the measurement values - indices are (pose id, landmark id)
 | |
|   Rot2 bearing11 = Rot2::fromDegrees(45),
 | |
|      bearing21 = Rot2::fromDegrees(90),
 | |
|      bearing32 = Rot2::fromDegrees(90);
 | |
|   double range11 = sqrt(4.0+4.0),
 | |
|        range21 = 2.0,
 | |
|        range32 = 2.0;
 | |
| 
 | |
|   // create bearing/range factors
 | |
|   graph += BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise);
 | |
|   graph += BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise);
 | |
|   graph += BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise);
 | |
| 
 | |
|   // linearization point for marginals
 | |
|   Values soln;
 | |
|   soln.insert(x1, Pose2(0.0, 0.0, 0.0));
 | |
|   soln.insert(x2, Pose2(2.0, 0.0, 0.0));
 | |
|   soln.insert(x3, Pose2(4.0, 0.0, 0.0));
 | |
|   soln.insert(l1, Point2(2.0, 2.0));
 | |
|   soln.insert(l2, Point2(4.0, 2.0));
 | |
| 
 | |
|   Matrix expectedx1(3,3);
 | |
|   expectedx1 <<
 | |
|       0.09, -7.1942452e-18, -1.27897692e-17,
 | |
|       -7.1942452e-18,         0.09, 1.27897692e-17,
 | |
|       -1.27897692e-17,  1.27897692e-17,         0.01;
 | |
|   Matrix expectedx2(3,3);
 | |
|   expectedx2 <<
 | |
|       0.120967742, -0.00129032258, 0.00451612903,
 | |
|       -0.00129032258,  0.158387097, 0.0206451613,
 | |
|       0.00451612903,  0.0206451613, 0.0177419355;
 | |
|   Matrix expectedx3(3,3);
 | |
|   expectedx3 <<
 | |
|       0.160967742, 0.00774193548,  0.00451612903,
 | |
|       0.00774193548,   0.351935484, 0.0561290323,
 | |
|       0.00451612903,  0.0561290323, 0.0277419355;
 | |
|   Matrix expectedl1(2,2);
 | |
|   expectedl1 <<
 | |
|       0.168709677, -0.0477419355,
 | |
|       -0.0477419355,   0.163548387;
 | |
|   Matrix expectedl2(2,2);
 | |
|   expectedl2 <<
 | |
|       0.293870968, -0.104516129,
 | |
|      -0.104516129,  0.391935484;
 | |
| 
 | |
|   // Check marginals covariances for all variables (Cholesky mode)
 | |
|   Marginals marginals(graph, soln, Marginals::CHOLESKY);
 | |
|   EXPECT(assert_equal(expectedx1, marginals.marginalCovariance(x1), 1e-8));
 | |
|   EXPECT(assert_equal(expectedx2, marginals.marginalCovariance(x2), 1e-8));
 | |
|   EXPECT(assert_equal(expectedx3, marginals.marginalCovariance(x3), 1e-8));
 | |
|   EXPECT(assert_equal(expectedl1, marginals.marginalCovariance(l1), 1e-8));
 | |
|   EXPECT(assert_equal(expectedl2, marginals.marginalCovariance(l2), 1e-8));
 | |
| 
 | |
|   // Check marginals covariances for all variables (QR mode)
 | |
|   marginals = Marginals(graph, soln, Marginals::QR);
 | |
|   EXPECT(assert_equal(expectedx1, marginals.marginalCovariance(x1), 1e-8));
 | |
|   EXPECT(assert_equal(expectedx2, marginals.marginalCovariance(x2), 1e-8));
 | |
|   EXPECT(assert_equal(expectedx3, marginals.marginalCovariance(x3), 1e-8));
 | |
|   EXPECT(assert_equal(expectedl1, marginals.marginalCovariance(l1), 1e-8));
 | |
|   EXPECT(assert_equal(expectedl2, marginals.marginalCovariance(l2), 1e-8));
 | |
| 
 | |
|   // Check joint marginals for 3 variables
 | |
|   Matrix expected_l2x1x3(8,8);
 | |
|   expected_l2x1x3 <<
 | |
|       0.293871159514111,  -0.104516127560770,   0.090000180000270,  -0.000000000000000,  -0.020000000000000,   0.151935669757191,  -0.104516127560770,  -0.050967744878460,
 | |
|      -0.104516127560770,   0.391935664055174,   0.000000000000000,   0.090000180000270,   0.040000000000000,   0.007741936219615,   0.351935664055174,   0.056129031890193,
 | |
|       0.090000180000270,   0.000000000000000,   0.090000180000270,  -0.000000000000000,   0.000000000000000,   0.090000180000270,   0.000000000000000,   0.000000000000000,
 | |
|      -0.000000000000000,   0.090000180000270,  -0.000000000000000,   0.090000180000270,   0.000000000000000,  -0.000000000000000,   0.090000180000270,   0.000000000000000,
 | |
|      -0.020000000000000,   0.040000000000000,   0.000000000000000,   0.000000000000000,   0.010000000000000,   0.000000000000000,   0.040000000000000,   0.010000000000000,
 | |
|       0.151935669757191,   0.007741936219615,   0.090000180000270,  -0.000000000000000,   0.000000000000000,   0.160967924878730,   0.007741936219615,   0.004516127560770,
 | |
|      -0.104516127560770,   0.351935664055174,   0.000000000000000,   0.090000180000270,   0.040000000000000,   0.007741936219615,   0.351935664055174,   0.056129031890193,
 | |
|      -0.050967744878460,   0.056129031890193,   0.000000000000000,   0.000000000000000,   0.010000000000000,   0.004516127560770,   0.056129031890193,   0.027741936219615;
 | |
|   vector<Key> variables(3);
 | |
|   variables[0] = x1;
 | |
|   variables[1] = l2;
 | |
|   variables[2] = x3;
 | |
|   JointMarginal joint_l2x1x3 = marginals.jointMarginalCovariance(variables);
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(0,0,2,2)), Matrix(joint_l2x1x3(l2,l2)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(2,0,3,2)), Matrix(joint_l2x1x3(x1,l2)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(5,0,3,2)), Matrix(joint_l2x1x3(x3,l2)), 1e-6));
 | |
| 
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(0,2,2,3)), Matrix(joint_l2x1x3(l2,x1)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(2,2,3,3)), Matrix(joint_l2x1x3(x1,x1)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(5,2,3,3)), Matrix(joint_l2x1x3(x3,x1)), 1e-6));
 | |
| 
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(0,5,2,3)), Matrix(joint_l2x1x3(l2,x3)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(2,5,3,3)), Matrix(joint_l2x1x3(x1,x3)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1x3.block(5,5,3,3)), Matrix(joint_l2x1x3(x3,x3)), 1e-6));
 | |
| 
 | |
|   // Check joint marginals for 2 variables (different code path than >2 variable case above)
 | |
|   Matrix expected_l2x1(5,5);
 | |
|   expected_l2x1 <<
 | |
|       0.293871159514111,  -0.104516127560770,   0.090000180000270,  -0.000000000000000,  -0.020000000000000,
 | |
|      -0.104516127560770,   0.391935664055174,   0.000000000000000,   0.090000180000270,   0.040000000000000,
 | |
|       0.090000180000270,   0.000000000000000,   0.090000180000270,  -0.000000000000000,   0.000000000000000,
 | |
|      -0.000000000000000,   0.090000180000270,  -0.000000000000000,   0.090000180000270,   0.000000000000000,
 | |
|      -0.020000000000000,   0.040000000000000,   0.000000000000000,   0.000000000000000,   0.010000000000000;
 | |
|   variables.resize(2);
 | |
|   variables[0] = l2;
 | |
|   variables[1] = x1;
 | |
|   JointMarginal joint_l2x1 = marginals.jointMarginalCovariance(variables);
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1.block(0,0,2,2)), Matrix(joint_l2x1(l2,l2)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1.block(2,0,3,2)), Matrix(joint_l2x1(x1,l2)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1.block(0,2,2,3)), Matrix(joint_l2x1(l2,x1)), 1e-6));
 | |
|   EXPECT(assert_equal(Matrix(expected_l2x1.block(2,2,3,3)), Matrix(joint_l2x1(x1,x1)), 1e-6));
 | |
| 
 | |
|   // Check joint marginal for 1 variable (different code path than >1 variable cases above)
 | |
|   variables.resize(1);
 | |
|   variables[0] = x1;
 | |
|   JointMarginal joint_x1 = marginals.jointMarginalCovariance(variables);
 | |
|   EXPECT(assert_equal(expectedx1, Matrix(joint_l2x1(x1,x1)), 1e-6));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(Marginals, order) {
 | |
|   NonlinearFactorGraph fg;
 | |
|   fg += PriorFactor<Pose2>(0, Pose2(), noiseModel::Unit::Create(3));
 | |
|   fg += BetweenFactor<Pose2>(0, 1, Pose2(1,0,0), noiseModel::Unit::Create(3));
 | |
|   fg += BetweenFactor<Pose2>(1, 2, Pose2(1,0,0), noiseModel::Unit::Create(3));
 | |
|   fg += BetweenFactor<Pose2>(2, 3, Pose2(1,0,0), noiseModel::Unit::Create(3));
 | |
| 
 | |
|   Values vals;
 | |
|   vals.insert(0, Pose2());
 | |
|   vals.insert(1, Pose2(1,0,0));
 | |
|   vals.insert(2, Pose2(2,0,0));
 | |
|   vals.insert(3, Pose2(3,0,0));
 | |
| 
 | |
|   vals.insert(100, Point2(0,1));
 | |
|   vals.insert(101, Point2(1,1));
 | |
| 
 | |
|   fg += BearingRangeFactor<Pose2,Point2>(0, 100,
 | |
|     vals.at<Pose2>(0).bearing(vals.at<Point2>(100)),
 | |
|     vals.at<Pose2>(0).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
 | |
|   fg += BearingRangeFactor<Pose2,Point2>(0, 101,
 | |
|     vals.at<Pose2>(0).bearing(vals.at<Point2>(101)),
 | |
|     vals.at<Pose2>(0).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));
 | |
| 
 | |
|   fg += BearingRangeFactor<Pose2,Point2>(1, 100,
 | |
|     vals.at<Pose2>(1).bearing(vals.at<Point2>(100)),
 | |
|     vals.at<Pose2>(1).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
 | |
|   fg += BearingRangeFactor<Pose2,Point2>(1, 101,
 | |
|     vals.at<Pose2>(1).bearing(vals.at<Point2>(101)),
 | |
|     vals.at<Pose2>(1).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));
 | |
| 
 | |
|   fg += BearingRangeFactor<Pose2,Point2>(2, 100,
 | |
|     vals.at<Pose2>(2).bearing(vals.at<Point2>(100)),
 | |
|     vals.at<Pose2>(2).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
 | |
|   fg += BearingRangeFactor<Pose2,Point2>(2, 101,
 | |
|     vals.at<Pose2>(2).bearing(vals.at<Point2>(101)),
 | |
|     vals.at<Pose2>(2).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));
 | |
| 
 | |
|   fg += BearingRangeFactor<Pose2,Point2>(3, 100,
 | |
|     vals.at<Pose2>(3).bearing(vals.at<Point2>(100)),
 | |
|     vals.at<Pose2>(3).range(vals.at<Point2>(100)), noiseModel::Unit::Create(2));
 | |
|   fg += BearingRangeFactor<Pose2,Point2>(3, 101,
 | |
|     vals.at<Pose2>(3).bearing(vals.at<Point2>(101)),
 | |
|     vals.at<Pose2>(3).range(vals.at<Point2>(101)), noiseModel::Unit::Create(2));
 | |
| 
 | |
|   Marginals marginals(fg, vals);
 | |
|   FastVector<Key> keys(fg.keys());
 | |
|   JointMarginal joint = marginals.jointMarginalCovariance(keys);
 | |
| 
 | |
|   LONGS_EQUAL(3, (long)joint(0,0).rows());
 | |
|   LONGS_EQUAL(3, (long)joint(1,1).rows());
 | |
|   LONGS_EQUAL(3, (long)joint(2,2).rows());
 | |
|   LONGS_EQUAL(3, (long)joint(3,3).rows());
 | |
|   LONGS_EQUAL(2, (long)joint(100,100).rows());
 | |
|   LONGS_EQUAL(2, (long)joint(101,101).rows());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |