119 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file Pose2SLAMwSPCG.cpp
 | 
						|
 * @brief A 2D Pose SLAM example using the SimpleSPCGSolver.
 | 
						|
 * @author Yong-Dian Jian
 | 
						|
 * @date June 2, 2012
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * A simple 2D pose slam example solved using a Conjugate-Gradient method
 | 
						|
 *  - The robot moves in a 2 meter square
 | 
						|
 *  - The robot moves 2 meters each step, turning 90 degrees after each step
 | 
						|
 *  - The robot initially faces along the X axis (horizontal, to the right in 2D)
 | 
						|
 *  - We have full odometry between pose
 | 
						|
 *  - We have a loop closure constraint when the robot returns to the first position
 | 
						|
 */
 | 
						|
 | 
						|
// As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
 | 
						|
// the robot positions
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
 | 
						|
// Each variable in the system (poses) must be identified with a unique key.
 | 
						|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | 
						|
// Here we will use simple integer keys
 | 
						|
#include <gtsam/nonlinear/Key.h>
 | 
						|
 | 
						|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | 
						|
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
 | 
						|
// Here we will use Between factors for the relative motion described by odometry measurements.
 | 
						|
// We will also use a Between Factor to encode the loop closure constraint
 | 
						|
// Also, we will initialize the robot at the origin using a Prior factor.
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
 | 
						|
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | 
						|
// are nonlinear factors, we will need a Nonlinear Factor Graph.
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
 | 
						|
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | 
						|
// nonlinear functions around an initial linearization point, then solve the linear system
 | 
						|
// to update the linearization point. This happens repeatedly until the solver converges
 | 
						|
// to a consistent set of variable values. This requires us to specify an initial guess
 | 
						|
// for each variable, held in a Values container.
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
 | 
						|
#include <gtsam/linear/SubgraphSolver.h>
 | 
						|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
int main(int argc, char** argv) {
 | 
						|
 | 
						|
  // 1. Create a factor graph container and add factors to it
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
 | 
						|
  // 2a. Add a prior on the first pose, setting it to the origin
 | 
						|
  // A prior factor consists of a mean and a noise model (covariance matrix)
 | 
						|
  Pose2 prior(0.0, 0.0, 0.0); // prior at origin
 | 
						|
  noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1));
 | 
						|
  graph.add(PriorFactor<Pose2>(1, prior, priorNoise));
 | 
						|
 | 
						|
  // 2b. Add odometry factors
 | 
						|
  // For simplicity, we will use the same noise model for each odometry factor
 | 
						|
  noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
 | 
						|
  // Create odometry (Between) factors between consecutive poses
 | 
						|
  graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, M_PI_2),    odometryNoise));
 | 
						|
  graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | 
						|
  graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | 
						|
  graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | 
						|
 | 
						|
  // 2c. Add the loop closure constraint
 | 
						|
  // This factor encodes the fact that we have returned to the same pose. In real systems,
 | 
						|
  // these constraints may be identified in many ways, such as appearance-based techniques
 | 
						|
  // with camera images.
 | 
						|
  // We will use another Between Factor to enforce this constraint, with the distance set to zero,
 | 
						|
  noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
 | 
						|
  graph.add(BetweenFactor<Pose2>(5, 1, Pose2(0.0, 0.0, 0.0), model));
 | 
						|
  graph.print("\nFactor Graph:\n"); // print
 | 
						|
 | 
						|
 | 
						|
  // 3. Create the data structure to hold the initialEstimate estimate to the solution
 | 
						|
  // For illustrative purposes, these have been deliberately set to incorrect values
 | 
						|
  Values initialEstimate;
 | 
						|
  initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
 | 
						|
  initialEstimate.insert(2, Pose2(2.3, 0.1, 1.1));
 | 
						|
  initialEstimate.insert(3, Pose2(2.1, 1.9, 2.8));
 | 
						|
  initialEstimate.insert(4, Pose2(-.3, 2.5, 4.2));
 | 
						|
  initialEstimate.insert(5, Pose2(0.1,-0.7, 5.8));
 | 
						|
  initialEstimate.print("\nInitial Estimate:\n"); // print
 | 
						|
 | 
						|
  // 4. Single Step Optimization using Levenberg-Marquardt
 | 
						|
  LevenbergMarquardtParams parameters;
 | 
						|
  parameters.verbosity = NonlinearOptimizerParams::ERROR;
 | 
						|
  parameters.verbosityLM = LevenbergMarquardtParams::LAMBDA;
 | 
						|
  parameters.linearSolverType = SuccessiveLinearizationParams::CONJUGATE_GRADIENT;
 | 
						|
 | 
						|
  {
 | 
						|
    parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
 | 
						|
    LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
 | 
						|
    Values result = optimizer.optimize();
 | 
						|
    result.print("Final Result:\n");
 | 
						|
    cout << "subgraph solver final error = " << graph.error(result) << endl;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 |