1001 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1001 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file   testGaussianFactorGraph.cpp
 | 
						|
 *  @brief  Unit tests for Linear Factor Graph
 | 
						|
 *  @author Christian Potthast
 | 
						|
 **/
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
#include <iostream>
 | 
						|
using namespace std;
 | 
						|
 | 
						|
#include <boost/foreach.hpp>
 | 
						|
#include <boost/tuple/tuple.hpp>
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/set.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/vector.hpp> // for operator +=
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#define GTSAM_MAGIC_KEY
 | 
						|
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
#include <gtsam/slam/smallExample.h>
 | 
						|
#include <gtsam/linear/GaussianBayesNet.h>
 | 
						|
#include <gtsam/base/numericalDerivative.h>
 | 
						|
#include <gtsam/inference/SymbolicFactorGraph.h>
 | 
						|
//#include <gtsam/inference/BayesTree-inl.h>
 | 
						|
#include <gtsam/linear/GaussianSequentialSolver.h>
 | 
						|
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
double tol=1e-5;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
/* unit test for equals (GaussianFactorGraph1 == GaussianFactorGraph2)       */
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, equals ){
 | 
						|
 | 
						|
  Ordering ordering; ordering += "x1","x2","l1";
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
  GaussianFactorGraph fg2 = createGaussianFactorGraph(ordering);
 | 
						|
  CHECK(fg.equals(fg2));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, error )
 | 
						|
{
 | 
						|
  Ordering ordering; ordering += "x1","x2","l1";
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
  VectorValues cfg = createZeroDelta(ordering);
 | 
						|
 | 
						|
  // note the error is the same as in testNonlinearFactorGraph as a
 | 
						|
  // zero delta config in the linear graph is equivalent to noisy in
 | 
						|
  // non-linear, which is really linear under the hood
 | 
						|
  double actual = fg.error(cfg);
 | 
						|
  DOUBLES_EQUAL( 5.625, actual, 1e-9 );
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
/* unit test for find seperator                                              */
 | 
						|
/* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, find_separator )
 | 
						|
//{
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//
 | 
						|
//  set<Symbol> separator = fg.find_separator("x2");
 | 
						|
//  set<Symbol> expected;
 | 
						|
//  expected.insert("x1");
 | 
						|
//  expected.insert("l1");
 | 
						|
//
 | 
						|
//  CHECK(separator.size()==expected.size());
 | 
						|
//  set<Symbol>::iterator it1 = separator.begin(), it2 = expected.begin();
 | 
						|
//  for(; it1!=separator.end(); it1++, it2++)
 | 
						|
//    CHECK(*it1 == *it2);
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactorGraph, combine_factors_x1 )
 | 
						|
//{
 | 
						|
//  // create a small example for a linear factor graph
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//
 | 
						|
//  // combine all factors
 | 
						|
//  GaussianFactor::shared_ptr actual = removeAndCombineFactors(fg,"x1");
 | 
						|
//
 | 
						|
//  // the expected linear factor
 | 
						|
//  Matrix Al1 = Matrix_(6,2,
 | 
						|
//			 0., 0.,
 | 
						|
//			 0., 0.,
 | 
						|
//			 0., 0.,
 | 
						|
//			 0., 0.,
 | 
						|
//			 5., 0.,
 | 
						|
//			 0., 5.
 | 
						|
//			 );
 | 
						|
//
 | 
						|
//  Matrix Ax1 = Matrix_(6,2,
 | 
						|
//			 10., 0.,
 | 
						|
//			 0., 10.,
 | 
						|
//			-10., 0.,
 | 
						|
//			 0.,-10.,
 | 
						|
//			-5., 0.,
 | 
						|
//			 0.,-5.
 | 
						|
//			 );
 | 
						|
//
 | 
						|
//  Matrix Ax2 = Matrix_(6,2,
 | 
						|
//			 0., 0.,
 | 
						|
//			 0., 0.,
 | 
						|
//			 10., 0.,
 | 
						|
//			 0., 10.,
 | 
						|
//			 0., 0.,
 | 
						|
//			 0., 0.
 | 
						|
//			 );
 | 
						|
//
 | 
						|
//  // the expected RHS vector
 | 
						|
//  Vector b(6);
 | 
						|
//  b(0) = -1;
 | 
						|
//  b(1) = -1;
 | 
						|
//  b(2) =  2;
 | 
						|
//  b(3) = -1;
 | 
						|
//  b(4) =  0;
 | 
						|
//  b(5) =  1;
 | 
						|
//
 | 
						|
//  vector<pair<Symbol, Matrix> > meas;
 | 
						|
//  meas.push_back(make_pair("l1", Al1));
 | 
						|
//  meas.push_back(make_pair("x1", Ax1));
 | 
						|
//  meas.push_back(make_pair("x2", Ax2));
 | 
						|
//  GaussianFactor expected(meas, b, ones(6));
 | 
						|
//  //GaussianFactor expected("l1", Al1, "x1", Ax1, "x2", Ax2, b);
 | 
						|
//
 | 
						|
//  // check if the two factors are the same
 | 
						|
//  CHECK(assert_equal(expected,*actual));
 | 
						|
//}
 | 
						|
//
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactorGraph, combine_factors_x2 )
 | 
						|
//{
 | 
						|
// // create a small example for a linear factor graph
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//
 | 
						|
//  // combine all factors
 | 
						|
//  GaussianFactor::shared_ptr actual = removeAndCombineFactors(fg,"x2");
 | 
						|
//
 | 
						|
//  // the expected linear factor
 | 
						|
//  Matrix Al1 = Matrix_(4,2,
 | 
						|
//			 // l1
 | 
						|
//			 0., 0.,
 | 
						|
//			 0., 0.,
 | 
						|
//			 5., 0.,
 | 
						|
//			 0., 5.
 | 
						|
//			 );
 | 
						|
//
 | 
						|
//  Matrix Ax1 = Matrix_(4,2,
 | 
						|
//                         // x1
 | 
						|
//			-10., 0., // f2
 | 
						|
//			 0.,-10., // f2
 | 
						|
//			 0., 0., // f4
 | 
						|
//			 0., 0.  // f4
 | 
						|
//			 );
 | 
						|
//
 | 
						|
//  Matrix Ax2 = Matrix_(4,2,
 | 
						|
//			 // x2
 | 
						|
//			 10., 0.,
 | 
						|
//			 0., 10.,
 | 
						|
//			-5., 0.,
 | 
						|
//			 0.,-5.
 | 
						|
//			 );
 | 
						|
//
 | 
						|
//  // the expected RHS vector
 | 
						|
//  Vector b(4);
 | 
						|
//  b(0) =  2;
 | 
						|
//  b(1) = -1;
 | 
						|
//  b(2) = -1;
 | 
						|
//  b(3) =  1.5;
 | 
						|
//
 | 
						|
//  vector<pair<Symbol, Matrix> > meas;
 | 
						|
//  meas.push_back(make_pair("l1", Al1));
 | 
						|
//  meas.push_back(make_pair("x1", Ax1));
 | 
						|
//  meas.push_back(make_pair("x2", Ax2));
 | 
						|
//  GaussianFactor expected(meas, b, ones(4));
 | 
						|
//
 | 
						|
//  // check if the two factors are the same
 | 
						|
//  CHECK(assert_equal(expected,*actual));
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianFactorGraph, eliminateOne_x1 )
 | 
						|
//{
 | 
						|
//  Ordering ordering; ordering += "x1","l1","x2";
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//  GaussianConditional::shared_ptr actual = GaussianSequentialSolver::EliminateUntil(fg, 1);
 | 
						|
//
 | 
						|
//  // create expected Conditional Gaussian
 | 
						|
//  Matrix I = 15*eye(2), R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
 | 
						|
//  Vector d = Vector_(2, -0.133333, -0.0222222), sigma = ones(2);
 | 
						|
//  GaussianConditional expected(ordering["x1"],15*d,R11,ordering["l1"],S12,ordering["x2"],S13,sigma);
 | 
						|
//
 | 
						|
//  CHECK(assert_equal(expected,*actual,tol));
 | 
						|
//}
 | 
						|
//
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianFactorGraph, eliminateOne_x2 )
 | 
						|
//{
 | 
						|
//   Ordering ordering; ordering += "x2","l1","x1";
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//  GaussianConditional::shared_ptr actual = GaussianSequentialSolver::EliminateUntil(fg, 1);
 | 
						|
//
 | 
						|
//  // create expected Conditional Gaussian
 | 
						|
//  double sig = 0.0894427;
 | 
						|
//  Matrix I = eye(2)/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | 
						|
//  Vector d = Vector_(2, 0.2, -0.14)/sig, sigma = ones(2);
 | 
						|
//  GaussianConditional expected(ordering["x2"],d,R11,ordering["l1"],S12,ordering["x1"],S13,sigma);
 | 
						|
//
 | 
						|
//  CHECK(assert_equal(expected,*actual,tol));
 | 
						|
//}
 | 
						|
//
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianFactorGraph, eliminateOne_l1 )
 | 
						|
//{
 | 
						|
//  Ordering ordering; ordering += "l1","x1","x2";
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//  GaussianConditional::shared_ptr actual = GaussianSequentialSolver::EliminateUntil(fg, 1);
 | 
						|
//
 | 
						|
//  // create expected Conditional Gaussian
 | 
						|
//  double sig = sqrt(2)/10.;
 | 
						|
//  Matrix I = eye(2)/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I;
 | 
						|
//  Vector d = Vector_(2, -0.1, 0.25)/sig, sigma = ones(2);
 | 
						|
//  GaussianConditional expected(ordering["l1"],d,R11,ordering["x1"],S12,ordering["x2"],S13,sigma);
 | 
						|
//
 | 
						|
//  CHECK(assert_equal(expected,*actual,tol));
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianFactorGraph, eliminateOne_x1_fast )
 | 
						|
//{
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//  GaussianConditional::shared_ptr actual = fg.eliminateOne("x1", false);
 | 
						|
//
 | 
						|
//  // create expected Conditional Gaussian
 | 
						|
//  Matrix I = 15*eye(2), R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
 | 
						|
//  Vector d = Vector_(2, -0.133333, -0.0222222), sigma = ones(2);
 | 
						|
//  GaussianConditional expected("x1",15*d,R11,"l1",S12,"x2",S13,sigma);
 | 
						|
//
 | 
						|
//  CHECK(assert_equal(expected,*actual,tol));
 | 
						|
//}
 | 
						|
//
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianFactorGraph, eliminateOne_x2_fast )
 | 
						|
//{
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//  GaussianConditional::shared_ptr actual = fg.eliminateOne("x2", false);
 | 
						|
//
 | 
						|
//  // create expected Conditional Gaussian
 | 
						|
//  double sig = 0.0894427;
 | 
						|
//  Matrix I = eye(2)/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | 
						|
//  Vector d = Vector_(2, 0.2, -0.14)/sig, sigma = ones(2);
 | 
						|
//  GaussianConditional expected("x2",d,R11,"l1",S12,"x1",S13,sigma);
 | 
						|
//
 | 
						|
//  CHECK(assert_equal(expected,*actual,tol));
 | 
						|
//}
 | 
						|
//
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianFactorGraph, eliminateOne_l1_fast )
 | 
						|
//{
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//  GaussianConditional::shared_ptr actual = fg.eliminateOne("l1", false);
 | 
						|
//
 | 
						|
//  // create expected Conditional Gaussian
 | 
						|
//  double sig = sqrt(2)/10.;
 | 
						|
//  Matrix I = eye(2)/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I;
 | 
						|
//  Vector d = Vector_(2, -0.1, 0.25)/sig, sigma = ones(2);
 | 
						|
//  GaussianConditional expected("l1",d,R11,"x1",S12,"x2",S13,sigma);
 | 
						|
//
 | 
						|
//  CHECK(assert_equal(expected,*actual,tol));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, eliminateAll )
 | 
						|
{
 | 
						|
	// create expected Chordal bayes Net
 | 
						|
	Matrix I = eye(2);
 | 
						|
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += "x2","l1","x1";
 | 
						|
 | 
						|
	Vector d1 = Vector_(2, -0.1,-0.1);
 | 
						|
	GaussianBayesNet expected = simpleGaussian(ordering["x1"],d1,0.1);
 | 
						|
 | 
						|
	double sig1 = 0.149071;
 | 
						|
	Vector d2 = Vector_(2, 0.0, 0.2)/sig1, sigma2 = ones(2);
 | 
						|
	push_front(expected,ordering["l1"],d2, I/sig1,ordering["x1"], (-1)*I/sig1,sigma2);
 | 
						|
 | 
						|
	double sig2 = 0.0894427;
 | 
						|
	Vector d3 = Vector_(2, 0.2, -0.14)/sig2, sigma3 = ones(2);
 | 
						|
	push_front(expected,ordering["x2"],d3, I/sig2,ordering["l1"], (-0.2)*I/sig2, ordering["x1"], (-0.8)*I/sig2, sigma3);
 | 
						|
 | 
						|
	// Check one ordering
 | 
						|
	GaussianFactorGraph fg1 = createGaussianFactorGraph(ordering);
 | 
						|
	GaussianBayesNet actual = *GaussianSequentialSolver(fg1).eliminate();
 | 
						|
	CHECK(assert_equal(expected,actual,tol));
 | 
						|
 | 
						|
  GaussianBayesNet actualET = *GaussianSequentialSolver(fg1).eliminate();
 | 
						|
  CHECK(assert_equal(expected,actualET,tol));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST( GaussianFactorGraph, eliminateAll_fast )
 | 
						|
//{
 | 
						|
//	// create expected Chordal bayes Net
 | 
						|
//	Matrix I = eye(2);
 | 
						|
//
 | 
						|
//	Vector d1 = Vector_(2, -0.1,-0.1);
 | 
						|
//	GaussianBayesNet expected = simpleGaussian("x1",d1,0.1);
 | 
						|
//
 | 
						|
//	double sig1 = 0.149071;
 | 
						|
//	Vector d2 = Vector_(2, 0.0, 0.2)/sig1, sigma2 = ones(2);
 | 
						|
//	push_front(expected,"l1",d2, I/sig1,"x1", (-1)*I/sig1,sigma2);
 | 
						|
//
 | 
						|
//	double sig2 = 0.0894427;
 | 
						|
//	Vector d3 = Vector_(2, 0.2, -0.14)/sig2, sigma3 = ones(2);
 | 
						|
//	push_front(expected,"x2",d3, I/sig2,"l1", (-0.2)*I/sig2, "x1", (-0.8)*I/sig2, sigma3);
 | 
						|
//
 | 
						|
//	// Check one ordering
 | 
						|
//	GaussianFactorGraph fg1 = createGaussianFactorGraph();
 | 
						|
//	Ordering ordering;
 | 
						|
//	ordering += "x2","l1","x1";
 | 
						|
//	GaussianBayesNet actual = fg1.eliminate(ordering, false);
 | 
						|
//	CHECK(assert_equal(expected,actual,tol));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, add_priors )
 | 
						|
{
 | 
						|
  Ordering ordering; ordering += "l1","x1","x2";
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
  GaussianFactorGraph actual = fg.add_priors(3, vector<size_t>(3,2));
 | 
						|
  GaussianFactorGraph expected = createGaussianFactorGraph(ordering);
 | 
						|
  Matrix A = eye(2);
 | 
						|
  Vector b = zero(2);
 | 
						|
  SharedDiagonal sigma = sharedSigma(2,3.0);
 | 
						|
  expected.push_back(GaussianFactor::shared_ptr(new GaussianFactor(ordering["l1"],A,b,sigma)));
 | 
						|
  expected.push_back(GaussianFactor::shared_ptr(new GaussianFactor(ordering["x1"],A,b,sigma)));
 | 
						|
  expected.push_back(GaussianFactor::shared_ptr(new GaussianFactor(ordering["x2"],A,b,sigma)));
 | 
						|
  CHECK(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, copying )
 | 
						|
{
 | 
						|
  // Create a graph
 | 
						|
  Ordering ordering; ordering += "x2","l1","x1";
 | 
						|
  GaussianFactorGraph actual = createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
  // Copy the graph !
 | 
						|
  GaussianFactorGraph copy = actual;
 | 
						|
 | 
						|
  // now eliminate the copy
 | 
						|
  GaussianBayesNet actual1 = *GaussianSequentialSolver(copy).eliminate();
 | 
						|
 | 
						|
  // Create the same graph, but not by copying
 | 
						|
  GaussianFactorGraph expected = createGaussianFactorGraph(ordering);
 | 
						|
 | 
						|
  // and check that original is still the same graph
 | 
						|
  CHECK(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactorGraph, matrix )
 | 
						|
//{
 | 
						|
//  // render with a given ordering
 | 
						|
//  Ordering ord;
 | 
						|
//  ord += "x2","l1","x1";
 | 
						|
//
 | 
						|
//  // Create a graph
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph(ordering);
 | 
						|
//
 | 
						|
//  Matrix A; Vector b;
 | 
						|
//  boost::tie(A,b) = fg.matrix();
 | 
						|
//
 | 
						|
//  Matrix A1 = Matrix_(2*4,3*2,
 | 
						|
//		     +0.,  0.,  0.,  0., 10.,  0., // unary factor on x1 (prior)
 | 
						|
//		     +0.,  0.,  0.,  0.,  0., 10.,
 | 
						|
//		     10.,  0.,  0.,  0.,-10.,  0., // binary factor on x2,x1 (odometry)
 | 
						|
//		     +0., 10.,  0.,  0.,  0.,-10.,
 | 
						|
//		     +0.,  0.,  5.,  0., -5.,  0., // binary factor on l1,x1 (z1)
 | 
						|
//		     +0.,  0.,  0.,  5.,  0., -5.,
 | 
						|
//		     -5.,  0.,  5.,  0.,  0.,  0., // binary factor on x2,l1 (z2)
 | 
						|
//		     +0., -5.,  0.,  5.,  0.,  0.
 | 
						|
//    );
 | 
						|
//  Vector b1 = Vector_(8,-1., -1., 2., -1., 0., 1., -1., 1.5);
 | 
						|
//
 | 
						|
//  EQUALITY(A,A1);
 | 
						|
//  CHECK(b==b1);
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactorGraph, sizeOfA )
 | 
						|
//{
 | 
						|
//	// create a small linear factor graph
 | 
						|
//	GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//
 | 
						|
//  pair<size_t, size_t> mn = fg.sizeOfA();
 | 
						|
//  CHECK(8 == mn.first);
 | 
						|
//  CHECK(6 == mn.second);
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//SL-FIX TEST( GaussianFactorGraph, sparse )
 | 
						|
//{
 | 
						|
//	// create a small linear factor graph
 | 
						|
//	GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//
 | 
						|
//	// render with a given ordering
 | 
						|
//	Ordering ord;
 | 
						|
//  ord += "x2","l1","x1";
 | 
						|
//
 | 
						|
//	Matrix ijs = fg.sparse(ord);
 | 
						|
//
 | 
						|
//	EQUALITY(Matrix_(3, 14,
 | 
						|
//		// f(x1)   f(x2,x1)            f(l1,x1)         f(x2,l1)
 | 
						|
//		+1., 2.,   3.,  4.,  3.,  4.,   5.,6., 5., 6.,   7., 8., 7., 8.,
 | 
						|
//		+5., 6.,   5.,  6.,  1.,  2.,   3.,4., 5., 6.,   3., 4., 1., 2.,
 | 
						|
//		10.,10., -10.,-10., 10., 10.,   5.,5.,-5.,-5.,   5., 5.,-5.,-5.), ijs);
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet )
 | 
						|
{
 | 
						|
  Ordering ord;
 | 
						|
  ord += "x2","l1","x1";
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | 
						|
 | 
						|
  // render with a given ordering
 | 
						|
  GaussianBayesNet CBN = *GaussianSequentialSolver(fg).eliminate();
 | 
						|
 | 
						|
  // True GaussianFactorGraph
 | 
						|
  GaussianFactorGraph fg2(CBN);
 | 
						|
  GaussianBayesNet CBN2 = *GaussianSequentialSolver(fg2).eliminate();
 | 
						|
  CHECK(assert_equal(CBN,CBN2));
 | 
						|
 | 
						|
//  // Base FactorGraph only
 | 
						|
//  FactorGraph<GaussianFactor> fg3(CBN);
 | 
						|
//  GaussianBayesNet CBN3 = gtsam::eliminate<GaussianFactor,GaussianConditional>(fg3,ord);
 | 
						|
//  CHECK(assert_equal(CBN,CBN3));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, getOrdering)
 | 
						|
{
 | 
						|
  Ordering original; original += "l1","x1","x2";
 | 
						|
  FactorGraph<IndexFactor> symbolic(createGaussianFactorGraph(original));
 | 
						|
  Permutation perm(*Inference::PermutationCOLAMD(VariableIndex(symbolic)));
 | 
						|
  Ordering actual = original; actual.permuteWithInverse((*perm.inverse()));
 | 
						|
  Ordering expected; expected += "l1","x2","x1";
 | 
						|
  CHECK(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
// SL-FIX TEST( GaussianFactorGraph, getOrdering2)
 | 
						|
//{
 | 
						|
//  Ordering expected;
 | 
						|
//  expected += "l1","x1";
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//  set<Symbol> interested; interested += "l1","x1";
 | 
						|
//  Ordering actual = fg.getOrdering(interested);
 | 
						|
//  CHECK(assert_equal(expected,actual));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, optimize )
 | 
						|
{
 | 
						|
  // create an ordering
 | 
						|
  Ordering ord; ord += "x2","l1","x1";
 | 
						|
 | 
						|
  // create a graph
 | 
						|
	GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | 
						|
 | 
						|
	// optimize the graph
 | 
						|
	VectorValues actual = *GaussianSequentialSolver(fg).optimize();
 | 
						|
 | 
						|
	// verify
 | 
						|
	VectorValues expected = createCorrectDelta(ord);
 | 
						|
 | 
						|
  CHECK(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactorGraph, optimizeMultiFrontlas )
 | 
						|
//{
 | 
						|
//  // create an ordering
 | 
						|
//  Ordering ord; ord += "x2","l1","x1";
 | 
						|
//
 | 
						|
//	// create a graph
 | 
						|
//	GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | 
						|
//
 | 
						|
//	// optimize the graph
 | 
						|
//	VectorValues actual = fg.optimizeMultiFrontals(ord);
 | 
						|
//
 | 
						|
//	// verify
 | 
						|
//	VectorValues expected = createCorrectDelta();
 | 
						|
//
 | 
						|
//  CHECK(assert_equal(expected,actual));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, combine)
 | 
						|
{
 | 
						|
  // create an ordering
 | 
						|
  Ordering ord; ord += "x2","l1","x1";
 | 
						|
 | 
						|
  // create a test graph
 | 
						|
	GaussianFactorGraph fg1 = createGaussianFactorGraph(ord);
 | 
						|
 | 
						|
	// create another factor graph
 | 
						|
	GaussianFactorGraph fg2 = createGaussianFactorGraph(ord);
 | 
						|
 | 
						|
	// get sizes
 | 
						|
	size_t size1 = fg1.size();
 | 
						|
	size_t size2 = fg2.size();
 | 
						|
 | 
						|
	// combine them
 | 
						|
	fg1.combine(fg2);
 | 
						|
 | 
						|
	CHECK(size1+size2 == fg1.size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, combine2)
 | 
						|
{
 | 
						|
  // create an ordering
 | 
						|
  Ordering ord; ord += "x2","l1","x1";
 | 
						|
 | 
						|
	// create a test graph
 | 
						|
	GaussianFactorGraph fg1 = createGaussianFactorGraph(ord);
 | 
						|
 | 
						|
	// create another factor graph
 | 
						|
	GaussianFactorGraph fg2 = createGaussianFactorGraph(ord);
 | 
						|
 | 
						|
	// get sizes
 | 
						|
	size_t size1 = fg1.size();
 | 
						|
	size_t size2 = fg2.size();
 | 
						|
 | 
						|
	// combine them
 | 
						|
	GaussianFactorGraph fg3 = GaussianFactorGraph::combine2(fg1, fg2);
 | 
						|
 | 
						|
	CHECK(size1+size2 == fg3.size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// print a vector of ints if needed for debugging
 | 
						|
void print(vector<int> v) {
 | 
						|
	for (size_t k = 0; k < v.size(); k++)
 | 
						|
		cout << v[k] << " ";
 | 
						|
	cout << endl;
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, factor_lookup)
 | 
						|
//{
 | 
						|
//	// create a test graph
 | 
						|
//	GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//
 | 
						|
//	// ask for all factor indices connected to x1
 | 
						|
//	list<size_t> x1_factors = fg.factors("x1");
 | 
						|
//	size_t x1_indices[] = { 0, 1, 2 };
 | 
						|
//	list<size_t> x1_expected(x1_indices, x1_indices + 3);
 | 
						|
//	CHECK(x1_factors==x1_expected);
 | 
						|
//
 | 
						|
//	// ask for all factor indices connected to x2
 | 
						|
//	list<size_t> x2_factors = fg.factors("x2");
 | 
						|
//	size_t x2_indices[] = { 1, 3 };
 | 
						|
//	list<size_t> x2_expected(x2_indices, x2_indices + 2);
 | 
						|
//	CHECK(x2_factors==x2_expected);
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, findAndRemoveFactors )
 | 
						|
//{
 | 
						|
//	// create the graph
 | 
						|
//	GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//
 | 
						|
//  // We expect to remove these three factors: 0, 1, 2
 | 
						|
//  GaussianFactor::shared_ptr f0 = fg[0];
 | 
						|
//  GaussianFactor::shared_ptr f1 = fg[1];
 | 
						|
//  GaussianFactor::shared_ptr f2 = fg[2];
 | 
						|
//
 | 
						|
//  // call the function
 | 
						|
//  vector<GaussianFactor::shared_ptr> factors = fg.findAndRemoveFactors("x1");
 | 
						|
//
 | 
						|
//  // Check the factors
 | 
						|
//  CHECK(f0==factors[0]);
 | 
						|
//  CHECK(f1==factors[1]);
 | 
						|
//  CHECK(f2==factors[2]);
 | 
						|
//
 | 
						|
//  // CHECK if the factors are deleted from the factor graph
 | 
						|
//  LONGS_EQUAL(1,fg.nrFactors());
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, createSmoother)
 | 
						|
{
 | 
						|
	GaussianFactorGraph fg1 = createSmoother(2).first;
 | 
						|
	LONGS_EQUAL(3,fg1.size());
 | 
						|
	GaussianFactorGraph fg2 = createSmoother(3).first;
 | 
						|
	LONGS_EQUAL(5,fg2.size());
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, variables )
 | 
						|
//{
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//  Dimensions expected;
 | 
						|
//  insert(expected)("l1", 2)("x1", 2)("x2", 2);
 | 
						|
//  Dimensions actual = fg.dimensions();
 | 
						|
//  CHECK(expected==actual);
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, keys )
 | 
						|
//{
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//  Ordering expected;
 | 
						|
//  expected += "l1","x1","x2";
 | 
						|
//  CHECK(assert_equal(expected,fg.keys()));
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, involves )
 | 
						|
//{
 | 
						|
//  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//  CHECK(fg.involves("l1"));
 | 
						|
//  CHECK(fg.involves("x1"));
 | 
						|
//  CHECK(fg.involves("x2"));
 | 
						|
//  CHECK(!fg.involves("x3"));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
double error(const VectorValues& x) {
 | 
						|
  // create an ordering
 | 
						|
  Ordering ord; ord += "x2","l1","x1";
 | 
						|
 | 
						|
	GaussianFactorGraph fg = createGaussianFactorGraph(ord);
 | 
						|
	return fg.error(x);
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, gradient )
 | 
						|
//{
 | 
						|
//	GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//
 | 
						|
//	// Construct expected gradient
 | 
						|
//	VectorValues expected;
 | 
						|
//
 | 
						|
//  // 2*f(x) = 100*(x1+c["x1"])^2 + 100*(x2-x1-[0.2;-0.1])^2 + 25*(l1-x1-[0.0;0.2])^2 + 25*(l1-x2-[-0.2;0.3])^2
 | 
						|
//	// worked out: df/dx1 = 100*[0.1;0.1] + 100*[0.2;-0.1]) + 25*[0.0;0.2] = [10+20;10-10+5] = [30;5]
 | 
						|
//  expected.insert("l1",Vector_(2,  5.0,-12.5));
 | 
						|
//  expected.insert("x1",Vector_(2, 30.0,  5.0));
 | 
						|
//  expected.insert("x2",Vector_(2,-25.0, 17.5));
 | 
						|
//
 | 
						|
//	// Check the gradient at delta=0
 | 
						|
//  VectorValues zero = createZeroDelta();
 | 
						|
//	VectorValues actual = fg.gradient(zero);
 | 
						|
//	CHECK(assert_equal(expected,actual));
 | 
						|
//
 | 
						|
//	// Check it numerically for good measure
 | 
						|
//	Vector numerical_g = numericalGradient<VectorValues>(error,zero,0.001);
 | 
						|
//	CHECK(assert_equal(Vector_(6,5.0,-12.5,30.0,5.0,-25.0,17.5),numerical_g));
 | 
						|
//
 | 
						|
//	// Check the gradient at the solution (should be zero)
 | 
						|
//	Ordering ord;
 | 
						|
//  ord += "x2","l1","x1";
 | 
						|
//	GaussianFactorGraph fg2 = createGaussianFactorGraph();
 | 
						|
//  VectorValues solution = fg2.optimize(ord); // destructive
 | 
						|
//	VectorValues actual2 = fg.gradient(solution);
 | 
						|
//	CHECK(assert_equal(zero,actual2));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, multiplication )
 | 
						|
{
 | 
						|
  // create an ordering
 | 
						|
  Ordering ord; ord += "x2","l1","x1";
 | 
						|
 | 
						|
	GaussianFactorGraph A = createGaussianFactorGraph(ord);
 | 
						|
  VectorValues x = createCorrectDelta(ord);
 | 
						|
  Errors actual = A * x;
 | 
						|
  Errors expected;
 | 
						|
  expected += Vector_(2,-1.0,-1.0);
 | 
						|
  expected += Vector_(2, 2.0,-1.0);
 | 
						|
  expected += Vector_(2, 0.0, 1.0);
 | 
						|
  expected += Vector_(2,-1.0, 1.5);
 | 
						|
	CHECK(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, transposeMultiplication )
 | 
						|
//{
 | 
						|
//  // create an ordering
 | 
						|
//  Ordering ord; ord += "x2","l1","x1";
 | 
						|
//
 | 
						|
//	GaussianFactorGraph A = createGaussianFactorGraph(ord);
 | 
						|
//  Errors e;
 | 
						|
//  e += Vector_(2, 0.0, 0.0);
 | 
						|
//  e += Vector_(2,15.0, 0.0);
 | 
						|
//  e += Vector_(2, 0.0,-5.0);
 | 
						|
//  e += Vector_(2,-7.5,-5.0);
 | 
						|
//
 | 
						|
//  VectorValues expected = createZeroDelta(ord), actual = A ^ e;
 | 
						|
//  expected[ord["l1"]] = Vector_(2, -37.5,-50.0);
 | 
						|
//  expected[ord["x1"]] = Vector_(2,-150.0, 25.0);
 | 
						|
//  expected[ord["x2"]] = Vector_(2, 187.5, 25.0);
 | 
						|
//	CHECK(assert_equal(expected,actual));
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-NEEDED? TEST( GaussianFactorGraph, rhs )
 | 
						|
//{
 | 
						|
//  // create an ordering
 | 
						|
//  Ordering ord; ord += "x2","l1","x1";
 | 
						|
//
 | 
						|
//	GaussianFactorGraph Ab = createGaussianFactorGraph(ord);
 | 
						|
//	Errors expected = createZeroDelta(ord), actual = Ab.rhs();
 | 
						|
//  expected.push_back(Vector_(2,-1.0,-1.0));
 | 
						|
//  expected.push_back(Vector_(2, 2.0,-1.0));
 | 
						|
//  expected.push_back(Vector_(2, 0.0, 1.0));
 | 
						|
//  expected.push_back(Vector_(2,-1.0, 1.5));
 | 
						|
//	CHECK(assert_equal(expected,actual));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Extra test on elimination prompted by Michael's email to Frank 1/4/2010
 | 
						|
TEST( GaussianFactorGraph, elimination )
 | 
						|
{
 | 
						|
  Ordering ord;
 | 
						|
  ord += "x1", "x2";
 | 
						|
	// Create Gaussian Factor Graph
 | 
						|
	GaussianFactorGraph fg;
 | 
						|
	Matrix Ap = eye(1), An = eye(1) * -1;
 | 
						|
	Vector b = Vector_(1, 0.0);
 | 
						|
  SharedDiagonal sigma = sharedSigma(1,2.0);
 | 
						|
	fg.add(ord["x1"], An, ord["x2"], Ap, b, sigma);
 | 
						|
	fg.add(ord["x1"], Ap, b, sigma);
 | 
						|
	fg.add(ord["x2"], Ap, b, sigma);
 | 
						|
 | 
						|
	// Eliminate
 | 
						|
	GaussianBayesNet bayesNet = *GaussianSequentialSolver(fg).eliminate();
 | 
						|
 | 
						|
	// Check sigma
 | 
						|
	DOUBLES_EQUAL(1.0,bayesNet[ord["x2"]]->get_sigmas()(0),1e-5);
 | 
						|
 | 
						|
	// Check matrix
 | 
						|
	Matrix R;Vector d;
 | 
						|
	boost::tie(R,d) = matrix(bayesNet);
 | 
						|
	Matrix expected = Matrix_(2,2,
 | 
						|
			0.707107,	-0.353553,
 | 
						|
			0.0,	 0.612372);
 | 
						|
	Matrix expected2 = Matrix_(2,2,
 | 
						|
			0.707107,	-0.353553,
 | 
						|
			0.0,	 -0.612372);
 | 
						|
	CHECK(equal_with_abs_tol(expected, R, 1e-6) || equal_with_abs_tol(expected2, R, 1e-6));
 | 
						|
}
 | 
						|
 | 
						|
 /* ************************************************************************* */
 | 
						|
// Tests ported from ConstrainedGaussianFactorGraph
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, constrained_simple )
 | 
						|
{
 | 
						|
	// get a graph with a constraint in it
 | 
						|
	GaussianFactorGraph fg = createSimpleConstraintGraph();
 | 
						|
 | 
						|
	// eliminate and solve
 | 
						|
	VectorValues actual = *GaussianSequentialSolver(fg).optimize();
 | 
						|
 | 
						|
	// verify
 | 
						|
	VectorValues expected = createSimpleConstraintValues();
 | 
						|
	CHECK(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, constrained_single )
 | 
						|
{
 | 
						|
	// get a graph with a constraint in it
 | 
						|
	GaussianFactorGraph fg = createSingleConstraintGraph();
 | 
						|
 | 
						|
	// eliminate and solve
 | 
						|
	VectorValues actual = *GaussianSequentialSolver(fg).optimize();
 | 
						|
 | 
						|
	// verify
 | 
						|
	VectorValues expected = createSingleConstraintValues();
 | 
						|
	CHECK(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//SL-FIX TEST( GaussianFactorGraph, constrained_single2 )
 | 
						|
//{
 | 
						|
//	// get a graph with a constraint in it
 | 
						|
//	GaussianFactorGraph fg = createSingleConstraintGraph();
 | 
						|
//
 | 
						|
//	// eliminate and solve
 | 
						|
//	Ordering ord;
 | 
						|
//	ord += "y", "x";
 | 
						|
//	VectorValues actual = fg.optimize(ord);
 | 
						|
//
 | 
						|
//	// verify
 | 
						|
//	VectorValues expected = createSingleConstraintValues();
 | 
						|
//	CHECK(assert_equal(expected, actual));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, constrained_multi1 )
 | 
						|
{
 | 
						|
	// get a graph with a constraint in it
 | 
						|
	GaussianFactorGraph fg = createMultiConstraintGraph();
 | 
						|
 | 
						|
	// eliminate and solve
 | 
						|
  VectorValues actual = *GaussianSequentialSolver(fg).optimize();
 | 
						|
 | 
						|
	// verify
 | 
						|
	VectorValues expected = createMultiConstraintValues();
 | 
						|
	CHECK(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//SL-FIX TEST( GaussianFactorGraph, constrained_multi2 )
 | 
						|
//{
 | 
						|
//	// get a graph with a constraint in it
 | 
						|
//	GaussianFactorGraph fg = createMultiConstraintGraph();
 | 
						|
//
 | 
						|
//	// eliminate and solve
 | 
						|
//	Ordering ord;
 | 
						|
//	ord += "z", "x", "y";
 | 
						|
//	VectorValues actual = fg.optimize(ord);
 | 
						|
//
 | 
						|
//	// verify
 | 
						|
//	VectorValues expected = createMultiConstraintValues();
 | 
						|
//	CHECK(assert_equal(expected, actual));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
SharedDiagonal model = sharedSigma(2,1);
 | 
						|
 | 
						|
// SL-FIX TEST( GaussianFactorGraph, findMinimumSpanningTree )
 | 
						|
//{
 | 
						|
//	GaussianFactorGraph g;
 | 
						|
//	Matrix I = eye(2);
 | 
						|
//	Vector b = Vector_(0, 0, 0);
 | 
						|
//	g.add("x1", I, "x2", I, b, model);
 | 
						|
//	g.add("x1", I, "x3", I, b, model);
 | 
						|
//	g.add("x1", I, "x4", I, b, model);
 | 
						|
//	g.add("x2", I, "x3", I, b, model);
 | 
						|
//	g.add("x2", I, "x4", I, b, model);
 | 
						|
//	g.add("x3", I, "x4", I, b, model);
 | 
						|
//
 | 
						|
//	map<string, string> tree = g.findMinimumSpanningTree<string, GaussianFactor>();
 | 
						|
//	CHECK(tree["x1"].compare("x1")==0);
 | 
						|
//	CHECK(tree["x2"].compare("x1")==0);
 | 
						|
//	CHECK(tree["x3"].compare("x1")==0);
 | 
						|
//	CHECK(tree["x4"].compare("x1")==0);
 | 
						|
//}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
// SL-FIX TEST( GaussianFactorGraph, split )
 | 
						|
//{
 | 
						|
//	GaussianFactorGraph g;
 | 
						|
//	Matrix I = eye(2);
 | 
						|
//	Vector b = Vector_(0, 0, 0);
 | 
						|
//	g.add("x1", I, "x2", I, b, model);
 | 
						|
//	g.add("x1", I, "x3", I, b, model);
 | 
						|
//	g.add("x1", I, "x4", I, b, model);
 | 
						|
//	g.add("x2", I, "x3", I, b, model);
 | 
						|
//	g.add("x2", I, "x4", I, b, model);
 | 
						|
//
 | 
						|
//	PredecessorMap<string> tree;
 | 
						|
//	tree["x1"] = "x1";
 | 
						|
//	tree["x2"] = "x1";
 | 
						|
//	tree["x3"] = "x1";
 | 
						|
//	tree["x4"] = "x1";
 | 
						|
//
 | 
						|
//	GaussianFactorGraph Ab1, Ab2;
 | 
						|
//  g.split<string, GaussianFactor>(tree, Ab1, Ab2);
 | 
						|
//	LONGS_EQUAL(3, Ab1.size());
 | 
						|
//	LONGS_EQUAL(2, Ab2.size());
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, replace)
 | 
						|
{
 | 
						|
  Ordering ord; ord += "x1","x2","x3","x4","x5","x6";
 | 
						|
	SharedDiagonal noise(sharedSigma(3, 1.0));
 | 
						|
 | 
						|
	GaussianFactorGraph::sharedFactor f1(new GaussianFactor(
 | 
						|
	    ord["x1"], eye(3,3), ord["x2"], eye(3,3), zero(3), noise));
 | 
						|
	GaussianFactorGraph::sharedFactor f2(new GaussianFactor(
 | 
						|
	    ord["x2"], eye(3,3), ord["x3"], eye(3,3), zero(3), noise));
 | 
						|
	GaussianFactorGraph::sharedFactor f3(new GaussianFactor(
 | 
						|
	    ord["x3"], eye(3,3), ord["x4"], eye(3,3), zero(3), noise));
 | 
						|
	GaussianFactorGraph::sharedFactor f4(new GaussianFactor(
 | 
						|
	    ord["x5"], eye(3,3), ord["x6"], eye(3,3), zero(3), noise));
 | 
						|
 | 
						|
	GaussianFactorGraph actual;
 | 
						|
	actual.push_back(f1);
 | 
						|
//	actual.checkGraphConsistency();
 | 
						|
	actual.push_back(f2);
 | 
						|
//	actual.checkGraphConsistency();
 | 
						|
	actual.push_back(f3);
 | 
						|
//	actual.checkGraphConsistency();
 | 
						|
	actual.replace(0, f4);
 | 
						|
//	actual.checkGraphConsistency();
 | 
						|
 | 
						|
	GaussianFactorGraph expected;
 | 
						|
	expected.push_back(f4);
 | 
						|
//	actual.checkGraphConsistency();
 | 
						|
	expected.push_back(f2);
 | 
						|
//	actual.checkGraphConsistency();
 | 
						|
	expected.push_back(f3);
 | 
						|
//	actual.checkGraphConsistency();
 | 
						|
 | 
						|
	CHECK(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************* */
 | 
						|
//TEST ( GaussianFactorGraph, combine_matrix ) {
 | 
						|
//	// create a small linear factor graph
 | 
						|
//	GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
//	Dimensions dimensions = fg.dimensions();
 | 
						|
//
 | 
						|
//	// get two factors from it and insert the factors into a vector
 | 
						|
//	vector<GaussianFactor::shared_ptr> lfg;
 | 
						|
//	lfg.push_back(fg[4 - 1]);
 | 
						|
//	lfg.push_back(fg[2 - 1]);
 | 
						|
//
 | 
						|
//	// combine in a factor
 | 
						|
//	Matrix Ab; SharedDiagonal noise;
 | 
						|
//	Ordering order; order += "x2", "l1", "x1";
 | 
						|
//	boost::tie(Ab, noise) = combineFactorsAndCreateMatrix(lfg, order, dimensions);
 | 
						|
//
 | 
						|
//	// the expected augmented matrix
 | 
						|
//	Matrix expAb = Matrix_(4, 7,
 | 
						|
//			-5.,  0., 5., 0.,  0.,  0.,-1.0,
 | 
						|
//			+0., -5., 0., 5.,  0.,  0., 1.5,
 | 
						|
//			10.,  0., 0., 0.,-10.,  0., 2.0,
 | 
						|
//			+0., 10., 0., 0.,  0.,-10.,-1.0);
 | 
						|
//
 | 
						|
//	// expected noise model
 | 
						|
//	SharedDiagonal expModel = noiseModel::Unit::Create(4);
 | 
						|
//
 | 
						|
//	CHECK(assert_equal(expAb, Ab));
 | 
						|
//	CHECK(assert_equal(*expModel, *noise));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
/**
 | 
						|
 *   x2 x1 x3 b
 | 
						|
 *    1  1    1       1  1  0  1
 | 
						|
 *    1    1  1  ->      1  1  1
 | 
						|
 *         1  1             1  1
 | 
						|
 */
 | 
						|
// SL-NEEDED? TEST ( GaussianFactorGraph, eliminateFrontals ) {
 | 
						|
//	typedef GaussianFactorGraph::sharedFactor Factor;
 | 
						|
//	SharedDiagonal model(Vector_(1, 0.5));
 | 
						|
//	GaussianFactorGraph fg;
 | 
						|
//	Factor factor1(new GaussianFactor("x1", Matrix_(1,1,1.), "x2", Matrix_(1,1,1.), Vector_(1,1.),  model));
 | 
						|
//	Factor factor2(new GaussianFactor("x2", Matrix_(1,1,1.), "x3", Matrix_(1,1,1.), Vector_(1,1.),  model));
 | 
						|
//	Factor factor3(new GaussianFactor("x3", Matrix_(1,1,1.), "x3", Matrix_(1,1,1.), Vector_(1,1.),  model));
 | 
						|
//	fg.push_back(factor1);
 | 
						|
//	fg.push_back(factor2);
 | 
						|
//	fg.push_back(factor3);
 | 
						|
//
 | 
						|
//	Ordering frontals; frontals += "x2", "x1";
 | 
						|
//	GaussianBayesNet bn = fg.eliminateFrontals(frontals);
 | 
						|
//
 | 
						|
//	GaussianBayesNet bn_expected;
 | 
						|
//	GaussianBayesNet::sharedConditional conditional1(new GaussianConditional("x2", Vector_(1, 2.), Matrix_(1, 1, 2.),
 | 
						|
//			"x1", Matrix_(1, 1, 1.), "x3", Matrix_(1, 1, 1.), Vector_(1, 1.)));
 | 
						|
//	GaussianBayesNet::sharedConditional conditional2(new GaussianConditional("x1", Vector_(1, 0.), Matrix_(1, 1, -1.),
 | 
						|
//			"x3", Matrix_(1, 1, 1.), Vector_(1, 1.)));
 | 
						|
//	bn_expected.push_back(conditional1);
 | 
						|
//	bn_expected.push_back(conditional2);
 | 
						|
//	CHECK(assert_equal(bn_expected, bn));
 | 
						|
//
 | 
						|
//	GaussianFactorGraph::sharedFactor factor_expected(new GaussianFactor("x3", Matrix_(1, 1, 2.), Vector_(1, 2.), SharedDiagonal(Vector_(1, 1.))));
 | 
						|
//	GaussianFactorGraph fg_expected;
 | 
						|
//	fg_expected.push_back(factor_expected);
 | 
						|
//	CHECK(assert_equal(fg_expected, fg));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |