231 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			231 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file   testLinearEquality.cpp
 | 
						|
 *  @brief  Unit tests for LinearEquality
 | 
						|
 *  @author Duy-Nguyen Ta
 | 
						|
 **/
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
#include <gtsam/base/TestableAssertions.h>
 | 
						|
#include <gtsam/linear/HessianFactor.h>
 | 
						|
#include <gtsam/linear/VectorValues.h>
 | 
						|
#include <gtsam_unstable/linear/LinearEquality.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
GTSAM_CONCEPT_TESTABLE_INST(LinearEquality)
 | 
						|
 | 
						|
namespace {
 | 
						|
namespace simple {
 | 
						|
// Terms we'll use
 | 
						|
using Terms = vector<pair<Key, Matrix> >;
 | 
						|
const Terms terms{make_pair(5, I_3x3), make_pair(10, 2 * I_3x3),
 | 
						|
                  make_pair(15, 3 * I_3x3)};
 | 
						|
 | 
						|
// RHS and sigmas
 | 
						|
const Vector b = (Vector(3) << 1., 2., 3.).finished();
 | 
						|
const SharedDiagonal noise = noiseModel::Constrained::All(3);
 | 
						|
}  // namespace simple
 | 
						|
}  // namespace
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LinearEquality, constructors_and_accessors) {
 | 
						|
  using namespace simple;
 | 
						|
 | 
						|
  // Test for using different numbers of terms
 | 
						|
  {
 | 
						|
    // One term constructor
 | 
						|
    LinearEquality expected(Terms(terms.begin(), terms.begin() + 1), b, 0);
 | 
						|
    LinearEquality actual(terms[0].first, terms[0].second, b, 0);
 | 
						|
    EXPECT(assert_equal(expected, actual));
 | 
						|
    LONGS_EQUAL((long)terms[0].first, (long)actual.keys().back());
 | 
						|
    EXPECT(assert_equal(terms[0].second, actual.getA(actual.end() - 1)));
 | 
						|
    EXPECT(assert_equal(b, expected.getb()));
 | 
						|
    EXPECT(assert_equal(b, actual.getb()));
 | 
						|
    EXPECT(assert_equal(*noise, *actual.get_model()));
 | 
						|
  }
 | 
						|
  {
 | 
						|
    // Two term constructor
 | 
						|
    LinearEquality expected(Terms(terms.begin(), terms.begin() + 2), b, 0);
 | 
						|
    LinearEquality actual(terms[0].first, terms[0].second, terms[1].first,
 | 
						|
                          terms[1].second, b, 0);
 | 
						|
    EXPECT(assert_equal(expected, actual));
 | 
						|
    LONGS_EQUAL((long)terms[1].first, (long)actual.keys().back());
 | 
						|
    EXPECT(assert_equal(terms[1].second, actual.getA(actual.end() - 1)));
 | 
						|
    EXPECT(assert_equal(b, expected.getb()));
 | 
						|
    EXPECT(assert_equal(b, actual.getb()));
 | 
						|
    EXPECT(assert_equal(*noise, *actual.get_model()));
 | 
						|
  }
 | 
						|
  {
 | 
						|
    // Three term constructor
 | 
						|
    LinearEquality expected(Terms(terms.begin(), terms.begin() + 3), b, 0);
 | 
						|
    LinearEquality actual(terms[0].first, terms[0].second, terms[1].first,
 | 
						|
                          terms[1].second, terms[2].first, terms[2].second, b,
 | 
						|
                          0);
 | 
						|
    EXPECT(assert_equal(expected, actual));
 | 
						|
    LONGS_EQUAL((long)terms[2].first, (long)actual.keys().back());
 | 
						|
    EXPECT(assert_equal(terms[2].second, actual.getA(actual.end() - 1)));
 | 
						|
    EXPECT(assert_equal(b, expected.getb()));
 | 
						|
    EXPECT(assert_equal(b, actual.getb()));
 | 
						|
    EXPECT(assert_equal(*noise, *actual.get_model()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LinearEquality, Hessian_conversion) {
 | 
						|
  HessianFactor hessian(
 | 
						|
      0,
 | 
						|
      (Matrix(4, 4) << 1.57, 2.695, -1.1, -2.35, 2.695, 11.3125, -0.65, -10.225,
 | 
						|
       -1.1, -0.65, 1, 0.5, -2.35, -10.225, 0.5, 9.25)
 | 
						|
          .finished(),
 | 
						|
      (Vector(4) << -7.885, -28.5175, 2.75, 25.675).finished(), 73.1725);
 | 
						|
 | 
						|
  try {
 | 
						|
    LinearEquality actual(hessian);
 | 
						|
    EXPECT(false);
 | 
						|
  } catch (const std::runtime_error& exception) {
 | 
						|
    EXPECT(true);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LinearEquality, error) {
 | 
						|
  LinearEquality factor(simple::terms, simple::b, 0);
 | 
						|
 | 
						|
  VectorValues values;
 | 
						|
  values.insert(5, Vector::Constant(3, 1.0));
 | 
						|
  values.insert(10, Vector::Constant(3, 0.5));
 | 
						|
  values.insert(15, Vector::Constant(3, 1.0 / 3.0));
 | 
						|
 | 
						|
  Vector expected_unwhitened(3);
 | 
						|
  expected_unwhitened << 2.0, 1.0, 0.0;
 | 
						|
  Vector actual_unwhitened = factor.unweighted_error(values);
 | 
						|
  EXPECT(assert_equal(expected_unwhitened, actual_unwhitened));
 | 
						|
 | 
						|
  // whitened is meaningless in constraints
 | 
						|
  Vector expected_whitened(3);
 | 
						|
  expected_whitened = expected_unwhitened;
 | 
						|
  Vector actual_whitened = factor.error_vector(values);
 | 
						|
  EXPECT(assert_equal(expected_whitened, actual_whitened));
 | 
						|
 | 
						|
  double expected_error = 0.0;
 | 
						|
  double actual_error = factor.error(values);
 | 
						|
  DOUBLES_EQUAL(expected_error, actual_error, 1e-10);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LinearEquality, matrices_NULL) {
 | 
						|
  // Make sure everything works with nullptr noise model
 | 
						|
  LinearEquality factor(simple::terms, simple::b, 0);
 | 
						|
 | 
						|
  Matrix AExpected(3, 9);
 | 
						|
  AExpected << simple::terms[0].second, simple::terms[1].second,
 | 
						|
      simple::terms[2].second;
 | 
						|
  Vector rhsExpected = simple::b;
 | 
						|
  Matrix augmentedJacobianExpected(3, 10);
 | 
						|
  augmentedJacobianExpected << AExpected, rhsExpected;
 | 
						|
 | 
						|
  // Whitened Jacobian
 | 
						|
  EXPECT(assert_equal(AExpected, factor.jacobian().first));
 | 
						|
  EXPECT(assert_equal(rhsExpected, factor.jacobian().second));
 | 
						|
  EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobian()));
 | 
						|
 | 
						|
  // Unwhitened Jacobian
 | 
						|
  EXPECT(assert_equal(AExpected, factor.jacobianUnweighted().first));
 | 
						|
  EXPECT(assert_equal(rhsExpected, factor.jacobianUnweighted().second));
 | 
						|
  EXPECT(assert_equal(augmentedJacobianExpected,
 | 
						|
                      factor.augmentedJacobianUnweighted()));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LinearEquality, matrices) {
 | 
						|
  // And now witgh a non-unit noise model
 | 
						|
  LinearEquality factor(simple::terms, simple::b, 0);
 | 
						|
 | 
						|
  Matrix jacobianExpected(3, 9);
 | 
						|
  jacobianExpected << simple::terms[0].second, simple::terms[1].second,
 | 
						|
      simple::terms[2].second;
 | 
						|
  Vector rhsExpected = simple::b;
 | 
						|
  Matrix augmentedJacobianExpected(3, 10);
 | 
						|
  augmentedJacobianExpected << jacobianExpected, rhsExpected;
 | 
						|
 | 
						|
  Matrix augmentedHessianExpected =
 | 
						|
      augmentedJacobianExpected.transpose() * simple::noise->R().transpose() *
 | 
						|
      simple::noise->R() * augmentedJacobianExpected;
 | 
						|
 | 
						|
  // Whitened Jacobian
 | 
						|
  EXPECT(assert_equal(jacobianExpected, factor.jacobian().first));
 | 
						|
  EXPECT(assert_equal(rhsExpected, factor.jacobian().second));
 | 
						|
  EXPECT(assert_equal(augmentedJacobianExpected, factor.augmentedJacobian()));
 | 
						|
 | 
						|
  // Unwhitened Jacobian
 | 
						|
  EXPECT(assert_equal(jacobianExpected, factor.jacobianUnweighted().first));
 | 
						|
  EXPECT(assert_equal(rhsExpected, factor.jacobianUnweighted().second));
 | 
						|
  EXPECT(assert_equal(augmentedJacobianExpected,
 | 
						|
                      factor.augmentedJacobianUnweighted()));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LinearEquality, operators) {
 | 
						|
  Matrix I = I_2x2;
 | 
						|
  Vector b = (Vector(2) << 0.2, -0.1).finished();
 | 
						|
  LinearEquality lf(1, -I, 2, I, b, 0);
 | 
						|
 | 
						|
  VectorValues c;
 | 
						|
  c.insert(1, (Vector(2) << 10., 20.).finished());
 | 
						|
  c.insert(2, (Vector(2) << 30., 60.).finished());
 | 
						|
 | 
						|
  // test A*x
 | 
						|
  Vector expectedE = (Vector(2) << 20., 40.).finished();
 | 
						|
  Vector actualE = lf * c;
 | 
						|
  EXPECT(assert_equal(expectedE, actualE));
 | 
						|
 | 
						|
  // test A^e
 | 
						|
  VectorValues expectedX;
 | 
						|
  expectedX.insert(1, (Vector(2) << -20., -40.).finished());
 | 
						|
  expectedX.insert(2, (Vector(2) << 20., 40.).finished());
 | 
						|
  VectorValues actualX = VectorValues::Zero(expectedX);
 | 
						|
  lf.transposeMultiplyAdd(1.0, actualE, actualX);
 | 
						|
  EXPECT(assert_equal(expectedX, actualX));
 | 
						|
 | 
						|
  // test gradient at zero
 | 
						|
  const auto [A, b2] = lf.jacobian();
 | 
						|
  VectorValues expectedG;
 | 
						|
  expectedG.insert(1, (Vector(2) << 0.2, -0.1).finished());
 | 
						|
  expectedG.insert(2, (Vector(2) << -0.2, 0.1).finished());
 | 
						|
  VectorValues actualG = lf.gradientAtZero();
 | 
						|
  EXPECT(assert_equal(expectedG, actualG));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(LinearEquality, default_error) {
 | 
						|
  LinearEquality f;
 | 
						|
  double actual = f.error(VectorValues());
 | 
						|
  DOUBLES_EQUAL(0.0, actual, 1e-15);
 | 
						|
}
 | 
						|
 | 
						|
//* ************************************************************************* */
 | 
						|
TEST(LinearEquality, empty) {
 | 
						|
  // create an empty factor
 | 
						|
  LinearEquality f;
 | 
						|
  EXPECT(f.empty());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() {
 | 
						|
  TestResult tr;
 | 
						|
  return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 |