gtsam/gtsam/hybrid/MixtureFactor.h

277 lines
9.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file MixtureFactor.h
* @brief Nonlinear Mixture factor of continuous and discrete.
* @author Kevin Doherty, kdoherty@mit.edu
* @author Varun Agrawal
* @date December 2021
*/
#pragma once
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/nonlinear/Symbol.h>
#include <algorithm>
#include <boost/format.hpp>
#include <cmath>
#include <limits>
#include <vector>
namespace gtsam {
/**
* @brief Implementation of a discrete conditional mixture factor.
*
* Implements a joint discrete-continuous factor where the discrete variable
* serves to "select" a mixture component corresponding to a NonlinearFactor
* type of measurement.
*
* This class stores all factors as HybridFactors which can then be typecast to
* one of (NonlinearFactor, GaussianFactor) which can then be checked to perform
* the correct operation.
*/
class MixtureFactor : public HybridFactor {
public:
using Base = HybridFactor;
using This = MixtureFactor;
using shared_ptr = boost::shared_ptr<MixtureFactor>;
using sharedFactor = boost::shared_ptr<NonlinearFactor>;
/**
* @brief typedef for DecisionTree which has Keys as node labels and
* NonlinearFactor as leaf nodes.
*/
using Factors = DecisionTree<Key, sharedFactor>;
private:
/// Decision tree of Gaussian factors indexed by discrete keys.
Factors factors_;
bool normalized_;
public:
MixtureFactor() = default;
/**
* @brief Construct from Decision tree.
*
* @param keys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Decision tree with of shared factors.
* @param normalized Flag indicating if the factor error is already
* normalized.
*/
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const Factors& factors, bool normalized = false)
: Base(keys, discreteKeys), factors_(factors), normalized_(normalized) {}
/**
* @brief Convenience constructor that generates the underlying factor
* decision tree for us.
*
* Here it is important that the vector of factors has the correct number of
* elements based on the number of discrete keys and the cardinality of the
* keys, so that the decision tree is constructed appropriately.
*
* @tparam FACTOR The type of the factor shared pointers being passed in. Will
* be typecast to NonlinearFactor shared pointers.
* @param keys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of shared pointers to factors.
* @param normalized Flag indicating if the factor error is already
* normalized.
*/
template <typename FACTOR>
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const std::vector<boost::shared_ptr<FACTOR>>& factors,
bool normalized = false)
: Base(keys, discreteKeys), normalized_(normalized) {
std::vector<NonlinearFactor::shared_ptr> nonlinear_factors;
KeySet continuous_keys_set(keys.begin(), keys.end());
KeySet factor_keys_set;
for (auto&& f : factors) {
// Insert all factor continuous keys in the continuous keys set.
std::copy(f->keys().begin(), f->keys().end(),
std::inserter(factor_keys_set, factor_keys_set.end()));
if (auto nf = boost::dynamic_pointer_cast<NonlinearFactor>(f)) {
nonlinear_factors.push_back(nf);
} else {
throw std::runtime_error(
"Factors passed into MixtureFactor need to be nonlinear!");
}
}
factors_ = Factors(discreteKeys, nonlinear_factors);
if (continuous_keys_set != factor_keys_set) {
throw std::runtime_error(
"The specified continuous keys and the keys in the factors don't "
"match!");
}
}
~MixtureFactor() = default;
/**
* @brief Compute error of the MixtureFactor as a tree.
*
* @param continuousVals The continuous values for which to compute the error.
* @return AlgebraicDecisionTree<Key> A decision tree with corresponding keys
* as the factor but leaf values as the error.
*/
AlgebraicDecisionTree<Key> error(const Values& continuousVals) const {
// functor to convert from sharedFactor to double error value.
auto errorFunc = [continuousVals](const sharedFactor& factor) {
return factor->error(continuousVals);
};
DecisionTree<Key, double> errorTree(factors_, errorFunc);
return errorTree;
}
/**
* @brief Compute error of factor given both continuous and discrete values.
*
* @param continuousVals The continuous Values.
* @param discreteVals The discrete Values.
* @return double The error of this factor.
*/
double error(const Values& continuousVals,
const DiscreteValues& discreteVals) const {
// Retrieve the factor corresponding to the assignment in discreteVals.
auto factor = factors_(discreteVals);
// Compute the error for the selected factor
const double factorError = factor->error(continuousVals);
if (normalized_) return factorError;
return factorError +
this->nonlinearFactorLogNormalizingConstant(factor, continuousVals);
}
size_t dim() const {
// TODO(Varun)
throw std::runtime_error("MixtureFactor::dim not implemented.");
}
/// Testable
/// @{
/// print to stdout
void print(
const std::string& s = "",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << (s.empty() ? "" : s + " ");
Base::print("", keyFormatter);
std::cout << "\nMixtureFactor\n";
auto valueFormatter = [](const sharedFactor& v) {
if (v) {
return (boost::format("Nonlinear factor on %d keys") % v->size()).str();
} else {
return std::string("nullptr");
}
};
factors_.print("", keyFormatter, valueFormatter);
}
/// Check equality
bool equals(const HybridFactor& other, double tol = 1e-9) const override {
// We attempt a dynamic cast from HybridFactor to MixtureFactor. If it
// fails, return false.
if (!dynamic_cast<const MixtureFactor*>(&other)) return false;
// If the cast is successful, we'll properly construct a MixtureFactor
// object from `other`
const MixtureFactor& f(static_cast<const MixtureFactor&>(other));
// Ensure that this MixtureFactor and `f` have the same `factors_`.
auto compare = [tol](const sharedFactor& a, const sharedFactor& b) {
return traits<NonlinearFactor>::Equals(*a, *b, tol);
};
if (!factors_.equals(f.factors_, compare)) return false;
// If everything above passes, and the keys_, discreteKeys_ and normalized_
// member variables are identical, return true.
return (std::equal(keys_.begin(), keys_.end(), f.keys().begin()) &&
(discreteKeys_ == f.discreteKeys_) &&
(normalized_ == f.normalized_));
}
/// @}
/// Linearize specific nonlinear factors based on the assignment in
/// discreteValues.
GaussianFactor::shared_ptr linearize(
const Values& continuousVals, const DiscreteValues& discreteVals) const {
auto factor = factors_(discreteVals);
return factor->linearize(continuousVals);
}
/// Linearize all the continuous factors to get a GaussianMixtureFactor.
boost::shared_ptr<GaussianMixtureFactor> linearize(
const Values& continuousVals) const {
// functional to linearize each factor in the decision tree
auto linearizeDT = [continuousVals](const sharedFactor& factor) {
return factor->linearize(continuousVals);
};
DecisionTree<Key, GaussianFactor::shared_ptr> linearized_factors(
factors_, linearizeDT);
return boost::make_shared<GaussianMixtureFactor>(
continuousKeys_, discreteKeys_, linearized_factors);
}
/**
* If the component factors are not already normalized, we want to compute
* their normalizing constants so that the resulting joint distribution is
* appropriately computed. Remember, this is the _negative_ normalizing
* constant for the measurement likelihood (since we are minimizing the
* _negative_ log-likelihood).
*/
double nonlinearFactorLogNormalizingConstant(const sharedFactor& factor,
const Values& values) const {
// Information matrix (inverse covariance matrix) for the factor.
Matrix infoMat;
// If this is a NoiseModelFactor, we'll use its noiseModel to
// otherwise noiseModelFactor will be nullptr
if (auto noiseModelFactor =
boost::dynamic_pointer_cast<NoiseModelFactor>(factor)) {
// If dynamic cast to NoiseModelFactor succeeded, see if the noise model
// is Gaussian
auto noiseModel = noiseModelFactor->noiseModel();
auto gaussianNoiseModel =
boost::dynamic_pointer_cast<noiseModel::Gaussian>(noiseModel);
if (gaussianNoiseModel) {
// If the noise model is Gaussian, retrieve the information matrix
infoMat = gaussianNoiseModel->information();
} else {
// If the factor is not a Gaussian factor, we'll linearize it to get
// something with a normalized noise model
// TODO(kevin): does this make sense to do? I think maybe not in
// general? Should we just yell at the user?
auto gaussianFactor = factor->linearize(values);
infoMat = gaussianFactor->information();
}
}
// Compute the (negative) log of the normalizing constant
return -(factor->dim() * log(2.0 * M_PI) / 2.0) -
(log(infoMat.determinant()) / 2.0);
}
};
} // namespace gtsam