gtsam/gtsam_unstable/base/Expression.h

160 lines
4.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Expression.h
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief Expressions for Block Automatic Differentiation
*/
#include "Expression-inl.h"
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/inference/Key.h>
#include <boost/make_shared.hpp>
#include <boost/bind.hpp>
namespace gtsam {
/**
* Expression class that supports automatic differentiation
*/
template<typename T>
class Expression {
public:
// Construct a constant expression
Expression(const T& value) :
root_(new ConstantExpression<T>(value)) {
}
// Construct a leaf expression
Expression(const Key& key) :
root_(new LeafExpression<T>(key)) {
}
/// Construct a unary expression
template<typename E>
Expression(typename UnaryExpression<T, E>::function f,
const Expression<E>& expression) {
// TODO Assert that root of expression is not null.
root_.reset(new UnaryExpression<T, E>(f, expression));
}
/// Construct a binary expression
template<typename E1, typename E2>
Expression(typename BinaryExpression<T, E1, E2>::function f,
const Expression<E1>& expression1, const Expression<E2>& expression2) {
// TODO Assert that root of expressions 1 and 2 are not null.
root_.reset(new BinaryExpression<T, E1, E2>(f, expression1, expression2));
}
/// Return keys that play in this expression
std::set<Key> keys() const {
return root_->keys();
}
/// Return value and optional derivatives
T value(const Values& values,
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
return root_->value(values, jacobians);
}
const boost::shared_ptr<ExpressionNode<T> >& root() const {
return root_;
}
private:
boost::shared_ptr<ExpressionNode<T> > root_;
};
// http://stackoverflow.com/questions/16260445/boost-bind-to-operator
template<class T>
struct apply_compose {
typedef T result_type;
T operator()(const T& x, const T& y, boost::optional<Matrix&> H1,
boost::optional<Matrix&> H2) const {
return x.compose(y, H1, H2);
}
};
/// Construct a product expression, assumes T::compose(T) -> T
template<typename T>
Expression<T> operator*(const Expression<T>& expression1,
const Expression<T>& expression2) {
return Expression<T>(boost::bind(apply_compose<T>(), _1, _2, _3, _4),
expression1, expression2);
}
/**
* BAD Factor that supports arbitrary expressions via AD
*/
template<class T>
class BADFactor: NonlinearFactor {
const T measurement_;
const Expression<T> expression_;
/// get value from expression and calculate error with respect to measurement
Vector unwhitenedError(const Values& values) const {
const T& value = expression_.value(values);
return value.localCoordinates(measurement_);
}
public:
/// Constructor
BADFactor(const T& measurement, const Expression<T>& expression) :
measurement_(measurement), expression_(expression) {
}
/// Constructor
BADFactor(const T& measurement, const ExpressionNode<T>& expression) :
measurement_(measurement), expression_(expression) {
}
/**
* Calculate the error of the factor.
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
*/
virtual double error(const Values& values) const {
if (this->active(values)) {
const Vector e = unwhitenedError(values);
return 0.5 * e.squaredNorm();
} else {
return 0.0;
}
}
/// get the dimension of the factor (number of rows on linearization)
size_t dim() const {
return 0;
}
/// linearize to a GaussianFactor
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
// We will construct an n-ary factor below, where terms is a container whose
// value type is std::pair<Key, Matrix>, specifying the
// collection of keys and matrices making up the factor.
std::map<Key, Matrix> terms;
expression_.value(values, terms);
Vector b = unwhitenedError(values);
SharedDiagonal model = SharedDiagonal();
return boost::shared_ptr<JacobianFactor>(
new JacobianFactor(terms, b, model));
}
};
// BADFactor
}