282 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file LinearizedFactor.cpp
 | |
|  * @brief A dummy factor that allows a linear factor to act as a nonlinear factor
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <gtsam_unstable/nonlinear/LinearizedFactor.h>
 | |
| #include <boost/foreach.hpp>
 | |
| #include <iostream>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| LinearizedGaussianFactor::LinearizedGaussianFactor(const GaussianFactor::shared_ptr& gaussian, const Ordering& ordering, const Values& lin_points) {
 | |
|   // Extract the keys and linearization points
 | |
|   BOOST_FOREACH(const Index& idx, gaussian->keys()) {
 | |
|     // find full symbol
 | |
|     if (idx < ordering.size()) {
 | |
|       Key key = ordering.key(idx);
 | |
| 
 | |
|       // extract linearization point
 | |
|       assert(lin_points.exists(key));
 | |
|       this->lin_points_.insert(key, lin_points.at(key));
 | |
| 
 | |
|       // store keys
 | |
|       this->keys_.push_back(key);
 | |
|     } else {
 | |
|       throw std::runtime_error("LinearizedGaussianFactor: could not find index in decoder!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| LinearizedJacobianFactor::LinearizedJacobianFactor() : Ab_(matrix_) {
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| LinearizedJacobianFactor::LinearizedJacobianFactor(const JacobianFactor::shared_ptr& jacobian,
 | |
|     const Ordering& ordering, const Values& lin_points)
 | |
| : Base(jacobian, ordering, lin_points), Ab_(matrix_) {
 | |
| 
 | |
|   // Get the Ab matrix from the Jacobian factor, with any covariance baked in
 | |
|   AbMatrix fullMatrix = jacobian->matrix_augmented(true);
 | |
| 
 | |
|   // Create the dims array
 | |
|   size_t *dims = (size_t *)alloca(sizeof(size_t) * (jacobian->size() + 1));
 | |
|   size_t index = 0;
 | |
|   for(JacobianFactor::const_iterator iter = jacobian->begin(); iter != jacobian->end(); ++iter) {
 | |
|     dims[index++] = jacobian->getDim(iter);
 | |
|   }
 | |
|   dims[index] = 1;
 | |
| 
 | |
|   // Update the BlockInfo accessor
 | |
|   BlockAb Ab(fullMatrix, dims, dims+jacobian->size()+1);
 | |
|   Ab.swap(Ab_);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void LinearizedJacobianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const {
 | |
| 
 | |
|   std::cout << s << std::endl;
 | |
| 
 | |
|   std::cout << "Nonlinear Keys: ";
 | |
|   BOOST_FOREACH(const Key& key, this->keys())
 | |
|     std::cout << keyFormatter(key) << " ";
 | |
|   std::cout << std::endl;
 | |
| 
 | |
|   for(const_iterator key=begin(); key!=end(); ++key)
 | |
|     std::cout << boost::format("A[%1%]=\n")%keyFormatter(*key) << A(*key) << std::endl;
 | |
|   std::cout << "b=\n" << b() << std::endl;
 | |
| 
 | |
|   lin_points_.print("Linearization Point: ");
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool LinearizedJacobianFactor::equals(const NonlinearFactor& expected, double tol) const {
 | |
| 
 | |
|   const This *e = dynamic_cast<const This*> (&expected);
 | |
|   if (e) {
 | |
| 
 | |
|     Matrix thisMatrix = this->Ab_.range(0, Ab_.nBlocks());
 | |
|     Matrix rhsMatrix = e->Ab_.range(0, Ab_.nBlocks());
 | |
| 
 | |
|     return Base::equals(expected, tol)
 | |
|         && lin_points_.equals(e->lin_points_, tol)
 | |
|         && equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| double LinearizedJacobianFactor::error(const Values& c) const {
 | |
|   Vector errorVector = error_vector(c);
 | |
|   return 0.5 * errorVector.dot(errorVector);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| boost::shared_ptr<GaussianFactor>
 | |
| LinearizedJacobianFactor::linearize(const Values& c, const Ordering& ordering) const {
 | |
| 
 | |
|   // Create the 'terms' data structure for the Jacobian constructor
 | |
|   std::vector<std::pair<Index, Matrix> > terms;
 | |
|   BOOST_FOREACH(Key key, keys()) {
 | |
|     terms.push_back(std::make_pair(ordering[key], this->A(key)));
 | |
|   }
 | |
| 
 | |
|   // compute rhs
 | |
|   Vector b = -error_vector(c);
 | |
| 
 | |
|   return boost::shared_ptr<GaussianFactor>(new JacobianFactor(terms, b, noiseModel::Unit::Create(dim())));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector LinearizedJacobianFactor::error_vector(const Values& c) const {
 | |
| 
 | |
|   Vector errorVector = -b();
 | |
| 
 | |
|   BOOST_FOREACH(Key key, this->keys()) {
 | |
|     const Value& newPt = c.at(key);
 | |
|     const Value& linPt = lin_points_.at(key);
 | |
|     Vector d = linPt.localCoordinates_(newPt);
 | |
|     const constABlock A = this->A(key);
 | |
|     errorVector += A * d;
 | |
|   }
 | |
| 
 | |
|   return errorVector;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| LinearizedHessianFactor::LinearizedHessianFactor() : info_(matrix_) {
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| LinearizedHessianFactor::LinearizedHessianFactor(const HessianFactor::shared_ptr& hessian,
 | |
|       const Ordering& ordering, const Values& lin_points)
 | |
| : Base(hessian, ordering, lin_points), info_(matrix_) {
 | |
| 
 | |
|   // Copy the augmented matrix holding G, g, and f
 | |
|   Matrix fullMatrix = hessian->info();
 | |
| 
 | |
|   // Create the dims array
 | |
|   size_t *dims = (size_t*)alloca(sizeof(size_t)*(hessian->size() + 1));
 | |
|   size_t index = 0;
 | |
|   for(HessianFactor::const_iterator iter = hessian->begin(); iter != hessian->end(); ++iter) {
 | |
|     dims[index++] = hessian->getDim(iter);
 | |
|   }
 | |
|   dims[index] = 1;
 | |
| 
 | |
|   // Update the BlockInfo accessor
 | |
|   BlockInfo infoMatrix(fullMatrix, dims, dims+hessian->size()+1);
 | |
|   infoMatrix.swap(info_);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void LinearizedHessianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const {
 | |
| 
 | |
|   std::cout << s << std::endl;
 | |
| 
 | |
|   std::cout << "Nonlinear Keys: ";
 | |
|   BOOST_FOREACH(const Key& key, this->keys())
 | |
|     std::cout << keyFormatter(key) << " ";
 | |
|   std::cout << std::endl;
 | |
| 
 | |
|   gtsam::print(Matrix(info_.range(0,info_.nBlocks(), 0,info_.nBlocks()).selfadjointView<Eigen::Upper>()), "Ab^T * Ab: ");
 | |
| 
 | |
|   lin_points_.print("Linearization Point: ");
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool LinearizedHessianFactor::equals(const NonlinearFactor& expected, double tol) const {
 | |
| 
 | |
|   const This *e = dynamic_cast<const This*> (&expected);
 | |
|   if (e) {
 | |
| 
 | |
|     Matrix thisMatrix = this->info_.full().selfadjointView<Eigen::Upper>();
 | |
|     thisMatrix(thisMatrix.rows()-1, thisMatrix.cols()-1) = 0.0;
 | |
|     Matrix rhsMatrix = e->info_.full().selfadjointView<Eigen::Upper>();
 | |
|     rhsMatrix(rhsMatrix.rows()-1, rhsMatrix.cols()-1) = 0.0;
 | |
| 
 | |
|     return Base::equals(expected, tol)
 | |
|         && lin_points_.equals(e->lin_points_, tol)
 | |
|         && equal_with_abs_tol(thisMatrix, rhsMatrix, tol);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| double LinearizedHessianFactor::error(const Values& c) const {
 | |
| 
 | |
|   // Construct an error vector in key-order from the Values
 | |
|   Vector dx = zero(dim());
 | |
|   size_t index = 0;
 | |
|   for(unsigned int i = 0; i < this->size(); ++i){
 | |
|     Key key = this->keys()[i];
 | |
|     const Value& newPt = c.at(key);
 | |
|     const Value& linPt = lin_points_.at(key);
 | |
|     dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt);
 | |
|     index += linPt.dim();
 | |
|   }
 | |
| 
 | |
|   // error 0.5*(f - 2*x'*g + x'*G*x)
 | |
|   double f = constantTerm();
 | |
|   double xtg = dx.dot(linearTerm());
 | |
|   double xGx = dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | |
| 
 | |
|   return 0.5 * (f - 2.0 * xtg +  xGx);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| boost::shared_ptr<GaussianFactor>
 | |
| LinearizedHessianFactor::linearize(const Values& c, const Ordering& ordering) const {
 | |
| 
 | |
|   // Use the ordering to convert the keys into indices;
 | |
|   std::vector<Index> js;
 | |
|   BOOST_FOREACH(Key key, this->keys()){
 | |
|     js.push_back(ordering.at(key));
 | |
|   }
 | |
| 
 | |
|   // Make a copy of the info matrix
 | |
|   Matrix newMatrix;
 | |
|   SymmetricBlockView<Matrix> newInfo(newMatrix);
 | |
|   newInfo.assignNoalias(info_);
 | |
| 
 | |
|   // Construct an error vector in key-order from the Values
 | |
|   Vector dx = zero(dim());
 | |
|   size_t index = 0;
 | |
|   for(unsigned int i = 0; i < this->size(); ++i){
 | |
|     Key key = this->keys()[i];
 | |
|     const Value& newPt = c.at(key);
 | |
|     const Value& linPt = lin_points_.at(key);
 | |
|     dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt);
 | |
|     index += linPt.dim();
 | |
|   }
 | |
| 
 | |
|   // f2 = f1 - 2*dx'*g1 + dx'*G1*dx
 | |
|   //newInfo(this->size(), this->size())(0,0) += -2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | |
|   double f = constantTerm() - 2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | |
| 
 | |
|   // g2 = g1 - G1*dx
 | |
|   //newInfo.rangeColumn(0, this->size(), this->size(), 0) -= squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | |
|   Vector g = linearTerm() - squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | |
|   std::vector<Vector> gs;
 | |
|   for(size_t i = 0; i < info_.nBlocks()-1; ++i) {
 | |
|     gs.push_back(g.segment(info_.offset(i), info_.offset(i+1) - info_.offset(i)));
 | |
|   }
 | |
| 
 | |
|   // G2 = G1
 | |
|   // Do Nothing
 | |
|   std::vector<Matrix> Gs;
 | |
|   for(size_t i = 0; i < info_.nBlocks()-1; ++i) {
 | |
|     for(size_t j = i; j < info_.nBlocks()-1; ++j) {
 | |
|       Gs.push_back(info_(i,j));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a Hessian Factor from the modified info matrix
 | |
|   //return boost::shared_ptr<GaussianFactor>(new HessianFactor(js, newInfo));
 | |
|   return boost::shared_ptr<GaussianFactor>(new HessianFactor(js, Gs, gs, f));
 | |
| }
 | |
| 
 | |
| } // \namespace aspn
 |