129 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			129 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Matlab
		
	
	
close all
 | 
						|
clc
 | 
						|
 | 
						|
import gtsam.*;
 | 
						|
 | 
						|
deltaT = 0.001;
 | 
						|
summarizedDeltaT = 0.1;
 | 
						|
timeElapsed = 1;
 | 
						|
times = 0:deltaT:timeElapsed;
 | 
						|
 | 
						|
omega = [0;0;2*pi];
 | 
						|
velocity = [1;0;0];
 | 
						|
 | 
						|
g = [0;0;0];
 | 
						|
cor_v = [0;0;0];
 | 
						|
 | 
						|
summaryTemplate = gtsam.ImuFactorPreintegratedMeasurements( ...
 | 
						|
    gtsam.imuBias.ConstantBias([0;0;0], [0;0;0]), ...
 | 
						|
    1e-3 * eye(3), 1e-3 * eye(3), 1e-3 * eye(3));
 | 
						|
 | 
						|
%% Set initial conditions for the true trajectory and for the estimates
 | 
						|
% (one estimate is obtained by integrating in the body frame, the other
 | 
						|
% by integrating in the navigation frame)
 | 
						|
% Initial state (body)
 | 
						|
currentPoseGlobal = Pose3;
 | 
						|
currentVelocityGlobal = velocity;
 | 
						|
 | 
						|
%% Prepare data structures for actual trajectory and estimates
 | 
						|
% Actual trajectory
 | 
						|
positions = zeros(3, length(times)+1);
 | 
						|
positions(:,1) = currentPoseGlobal.translation.vector;
 | 
						|
poses(1).p = positions(:,1);
 | 
						|
poses(1).R = currentPoseGlobal.rotation.matrix;
 | 
						|
 | 
						|
%% Solver object
 | 
						|
isamParams = ISAM2Params;
 | 
						|
isamParams.setRelinearizeSkip(1);
 | 
						|
isam = gtsam.ISAM2(isamParams);
 | 
						|
 | 
						|
sigma_init_x = 1.0;
 | 
						|
sigma_init_v = 1.0;
 | 
						|
sigma_init_b = 1.0;
 | 
						|
 | 
						|
initialValues = Values;
 | 
						|
initialValues.insert(symbol('x',0), currentPoseGlobal);
 | 
						|
initialValues.insert(symbol('v',0), LieVector(currentVelocityGlobal));
 | 
						|
initialValues.insert(symbol('b',0), imuBias.ConstantBias([0;0;0],[0;0;0]));
 | 
						|
initialFactors = NonlinearFactorGraph;
 | 
						|
% Prior on initial pose
 | 
						|
initialFactors.add(PriorFactorPose3(symbol('x',0), ...
 | 
						|
    currentPoseGlobal, noiseModel.Isotropic.Sigma(6, sigma_init_x)));
 | 
						|
% Prior on initial velocity 
 | 
						|
initialFactors.add(PriorFactorLieVector(symbol('v',0), ...
 | 
						|
    LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, sigma_init_v)));
 | 
						|
% Prior on initial bias
 | 
						|
initialFactors.add(PriorFactorConstantBias(symbol('b',0), ...
 | 
						|
    imuBias.ConstantBias([0;0;0],[0;0;0]), noiseModel.Isotropic.Sigma(6, sigma_init_b)));
 | 
						|
 | 
						|
%% Main loop
 | 
						|
i = 2;
 | 
						|
lastSummaryTime = 0;
 | 
						|
lastSummaryIndex = 0;
 | 
						|
currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate);
 | 
						|
for t = times
 | 
						|
  %% Create the ground truth trajectory, using the velocities and accelerations in the inertial frame to compute the positions
 | 
						|
  [ currentPoseGlobal, currentVelocityGlobal ] = imuSimulator.integrateTrajectory( ...
 | 
						|
    currentPoseGlobal, omega, velocity, velocity, deltaT);
 | 
						|
  
 | 
						|
  %% Simulate IMU measurements, considering Coriolis effect 
 | 
						|
  % (in this simple example we neglect gravity and there are no other forces acting on the body)
 | 
						|
  acc_omega = imuSimulator.calculateIMUMeas_coriolis( ...
 | 
						|
    omega, omega, velocity, velocity, deltaT);
 | 
						|
 | 
						|
  %% Accumulate preintegrated measurement
 | 
						|
  currentSummarizedMeasurement.integrateMeasurement(acc_omega(1:3), acc_omega(4:6), deltaT);
 | 
						|
  
 | 
						|
  %% Update solver
 | 
						|
  if t - lastSummaryTime >= summarizedDeltaT
 | 
						|
    
 | 
						|
      % Create IMU factor
 | 
						|
      initialFactors.add(ImuFactor( ...
 | 
						|
          symbol('x',lastSummaryIndex), symbol('v',lastSummaryIndex), ...
 | 
						|
          symbol('x',lastSummaryIndex+1), symbol('v',lastSummaryIndex+1), ...
 | 
						|
          symbol('b',0), currentSummarizedMeasurement, g, cor_v, ...
 | 
						|
          noiseModel.Isotropic.Sigma(9, 1e-6)));
 | 
						|
      
 | 
						|
      % Predict movement in a straight line (bad initialization)
 | 
						|
      if lastSummaryIndex > 0
 | 
						|
          initialPose = isam.calculateEstimate(symbol('x',lastSummaryIndex)) ...
 | 
						|
              .compose(Pose3(Rot3, Point3(  velocity * t - lastSummaryTime)  ));
 | 
						|
          initialVel = isam.calculateEstimate(symbol('v',lastSummaryIndex));
 | 
						|
      else
 | 
						|
          initialPose = Pose3;
 | 
						|
          initialVel = LieVector(velocity);
 | 
						|
      end
 | 
						|
      initialValues.insert(symbol('x',lastSummaryIndex+1), initialPose);
 | 
						|
      initialValues.insert(symbol('v',lastSummaryIndex+1), initialVel); 
 | 
						|
      
 | 
						|
      key_pose = symbol('x',lastSummaryIndex+1);
 | 
						|
      
 | 
						|
      % Update solver
 | 
						|
      isam.update(initialFactors, initialValues);
 | 
						|
      initialFactors = NonlinearFactorGraph;
 | 
						|
      initialValues = Values;
 | 
						|
      
 | 
						|
       isam.calculateEstimate(key_pose);
 | 
						|
       M = isam.marginalCovariance(key_pose);
 | 
						|
      
 | 
						|
      lastSummaryIndex = lastSummaryIndex + 1;
 | 
						|
      lastSummaryTime = t;
 | 
						|
      currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate);
 | 
						|
  end
 | 
						|
  
 | 
						|
  %% Store data in some structure for statistics and plots
 | 
						|
  positions(:,i) = currentPoseGlobal.translation.vector;
 | 
						|
  i = i + 1;
 | 
						|
end
 | 
						|
 | 
						|
figure(1)
 | 
						|
hold on;
 | 
						|
plot(positions(1,:), positions(2,:), '-b');
 | 
						|
plot3DTrajectory(isam.calculateEstimate, 'g-');
 | 
						|
 | 
						|
 | 
						|
axis equal;
 | 
						|
legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')
 | 
						|
 | 
						|
 |