125 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file   testSubgraphSolver.cpp
 | 
						|
 *  @brief  Unit tests for SubgraphSolver
 | 
						|
 *  @author Yong-Dian Jian
 | 
						|
 **/
 | 
						|
 | 
						|
#include <gtsam/linear/SubgraphSolver.h>
 | 
						|
 | 
						|
#include <tests/smallExample.h>
 | 
						|
#include <gtsam/linear/GaussianBayesNet.h>
 | 
						|
#include <gtsam/linear/iterative.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/linear/SubgraphBuilder.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/inference/Ordering.h>
 | 
						|
#include <gtsam/base/numericalDerivative.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
static size_t N = 3;
 | 
						|
static SubgraphSolverParameters kParameters;
 | 
						|
static auto kOrdering = example::planarOrdering(N);
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
/** unnormalized error */
 | 
						|
static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
 | 
						|
  double total_error = 0.;
 | 
						|
  for(const GaussianFactor::shared_ptr& factor: fg)
 | 
						|
    total_error += factor->error(x);
 | 
						|
  return total_error;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( SubgraphSolver, Parameters )
 | 
						|
{
 | 
						|
  LONGS_EQUAL(SubgraphSolverParameters::SILENT, kParameters.verbosity());
 | 
						|
  LONGS_EQUAL(500, kParameters.maxIterations());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( SubgraphSolver, splitFactorGraph )
 | 
						|
{
 | 
						|
  // Build a planar graph
 | 
						|
  const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
 | 
						|
 | 
						|
  SubgraphBuilderParameters params;
 | 
						|
  params.augmentationFactor = 0.0;
 | 
						|
  SubgraphBuilder builder(params);
 | 
						|
  auto subgraph = builder(Ab);
 | 
						|
  EXPECT_LONGS_EQUAL(9, subgraph.size());
 | 
						|
 | 
						|
  const auto [Ab1, Ab2] = splitFactorGraph(Ab, subgraph);
 | 
						|
  EXPECT_LONGS_EQUAL(9, Ab1.size());
 | 
						|
  EXPECT_LONGS_EQUAL(13, Ab2.size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( SubgraphSolver, constructor1 )
 | 
						|
{
 | 
						|
  // Build a planar graph
 | 
						|
  const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
 | 
						|
 | 
						|
  // The first constructor just takes a factor graph (and kParameters)
 | 
						|
  // and it will split the graph into A1 and A2, where A1 is a spanning tree
 | 
						|
  SubgraphSolver solver(Ab, kParameters, kOrdering);
 | 
						|
  VectorValues optimized = solver.optimize(); // does PCG optimization
 | 
						|
  DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( SubgraphSolver, constructor2 )
 | 
						|
{
 | 
						|
  // Build a planar graph
 | 
						|
  size_t N = 3;
 | 
						|
  const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
 | 
						|
 | 
						|
  // Get the spanning tree, A1*x-b1 and A2*x-b2
 | 
						|
  const auto [Ab1, Ab2] = example::splitOffPlanarTree(N, Ab);
 | 
						|
 | 
						|
  // The second constructor takes two factor graphs, so the caller can specify
 | 
						|
  // the preconditioner (Ab1) and the constraints that are left out (Ab2)
 | 
						|
  SubgraphSolver solver(Ab1, Ab2, kParameters, kOrdering);
 | 
						|
  VectorValues optimized = solver.optimize();
 | 
						|
  DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( SubgraphSolver, constructor3 )
 | 
						|
{
 | 
						|
  // Build a planar graph
 | 
						|
  size_t N = 3;
 | 
						|
  const auto [Ab, xtrue] = example::planarGraph(N); // A*x-b
 | 
						|
 | 
						|
  // Get the spanning tree and corresponding kOrdering
 | 
						|
  // A1*x-b1 and A2*x-b2
 | 
						|
  const auto [Ab1, Ab2] = example::splitOffPlanarTree(N, Ab);
 | 
						|
 | 
						|
  // The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT
 | 
						|
  auto Rc1 = *Ab1.eliminateSequential();
 | 
						|
 | 
						|
  // The third constructor allows the caller to pass an already solved preconditioner Rc1_
 | 
						|
  // as a Bayes net, in addition to the "loop closing constraints" Ab2, as before
 | 
						|
  SubgraphSolver solver(Rc1, Ab2, kParameters);
 | 
						|
  VectorValues optimized = solver.optimize();
 | 
						|
  DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | 
						|
/* ************************************************************************* */
 |