150 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			150 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    VisualISAMExample.cpp
 | 
						|
 * @brief   A visualSLAM example for the structure-from-motion problem on a simulated dataset
 | 
						|
 * This version uses iSAM to solve the problem incrementally
 | 
						|
 * @author  Duy-Nguyen Ta
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * A structure-from-motion example with landmarks
 | 
						|
 *  - The landmarks form a 10 meter cube
 | 
						|
 *  - The robot rotates around the landmarks, always facing towards the cube
 | 
						|
 */
 | 
						|
 | 
						|
// As this is a full 3D problem, we will use Pose3 variables to represent the camera
 | 
						|
// positions and Point3 variables (x, y, z) to represent the landmark coordinates.
 | 
						|
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | 
						|
// We will also need a camera object to hold calibration information and perform projections.
 | 
						|
#include <gtsam/geometry/Pose3.h>
 | 
						|
#include <gtsam/geometry/Point3.h>
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
#include <gtsam/geometry/SimpleCamera.h>
 | 
						|
 | 
						|
// Each variable in the system (poses and landmarks) must be identified with a unique key.
 | 
						|
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | 
						|
// Here we will use Symbols
 | 
						|
#include <gtsam/nonlinear/Symbol.h>
 | 
						|
 | 
						|
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | 
						|
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
 | 
						|
// Here we will use Projection factors to model the camera's landmark observations.
 | 
						|
// Also, we will initialize the robot at some location using a Prior factor.
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/ProjectionFactor.h>
 | 
						|
 | 
						|
// We want to use iSAM to solve the structure-from-motion problem incrementally, so
 | 
						|
// include iSAM here
 | 
						|
#include <gtsam/nonlinear/NonlinearISAM.h>
 | 
						|
 | 
						|
// iSAM requires as input a set set of new factors to be added stored in a factor graph,
 | 
						|
// and initial guesses for any new variables used in the added factors
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main(int argc, char* argv[]) {
 | 
						|
 | 
						|
  // Define the camera calibration parameters
 | 
						|
  Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
 | 
						|
 | 
						|
  // Define the camera observation noise model
 | 
						|
  noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | 
						|
 | 
						|
  // Create the set of ground-truth landmarks
 | 
						|
  std::vector<gtsam::Point3> points;
 | 
						|
  points.push_back(gtsam::Point3(10.0,10.0,10.0));
 | 
						|
  points.push_back(gtsam::Point3(-10.0,10.0,10.0));
 | 
						|
  points.push_back(gtsam::Point3(-10.0,-10.0,10.0));
 | 
						|
  points.push_back(gtsam::Point3(10.0,-10.0,10.0));
 | 
						|
  points.push_back(gtsam::Point3(10.0,10.0,-10.0));
 | 
						|
  points.push_back(gtsam::Point3(-10.0,10.0,-10.0));
 | 
						|
  points.push_back(gtsam::Point3(-10.0,-10.0,-10.0));
 | 
						|
  points.push_back(gtsam::Point3(10.0,-10.0,-10.0));
 | 
						|
 | 
						|
  // Create the set of ground-truth poses
 | 
						|
  std::vector<gtsam::Pose3> poses;
 | 
						|
  double radius = 30.0;
 | 
						|
  int i = 0;
 | 
						|
  double theta = 0.0;
 | 
						|
  gtsam::Point3 up(0,0,1);
 | 
						|
  gtsam::Point3 target(0,0,0);
 | 
						|
  for(; i < 8; ++i, theta += 2*M_PI/8) {
 | 
						|
    gtsam::Point3 position = Point3(radius*cos(theta), radius*sin(theta), 0.0);
 | 
						|
    gtsam::SimpleCamera camera = SimpleCamera::Lookat(position, target, up);
 | 
						|
    poses.push_back(camera.pose());
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a NonlinearISAM object which will relinearize and reorder the variables every "relinearizeInterval" updates
 | 
						|
  int relinearizeInterval = 3;
 | 
						|
  NonlinearISAM isam(relinearizeInterval);
 | 
						|
 | 
						|
  // Create a Factor Graph and Values to hold the new data
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
  Values initialEstimate;
 | 
						|
 | 
						|
  // Loop over the different poses, adding the observations to iSAM incrementally
 | 
						|
  for (size_t i = 0; i < poses.size(); ++i) {
 | 
						|
 | 
						|
    // Add factors for each landmark observation
 | 
						|
    for (size_t j = 0; j < points.size(); ++j) {
 | 
						|
      SimpleCamera camera(poses[i], *K);
 | 
						|
      Point2 measurement = camera.project(points[j]);
 | 
						|
      graph.add(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
 | 
						|
    }
 | 
						|
 | 
						|
    // Add an initial guess for the current pose
 | 
						|
    // Intentionally initialize the variables off from the ground truth
 | 
						|
    initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
 | 
						|
 | 
						|
    // If this is the first iteration, add a prior on the first pose to set the coordinate frame
 | 
						|
    // and a prior on the first landmark to set the scale
 | 
						|
    // Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
 | 
						|
    // adding it to iSAM.
 | 
						|
    if( i == 0) {
 | 
						|
      // Add a prior on pose x0
 | 
						|
      noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(Vector_(6, 0.3, 0.3, 0.3, 0.1, 0.1, 0.1)); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | 
						|
      graph.add(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
 | 
						|
 | 
						|
      // Add a prior on landmark l0
 | 
						|
      noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
 | 
						|
      graph.add(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
 | 
						|
 | 
						|
      // Add initial guesses to all observed landmarks
 | 
						|
      // Intentionally initialize the variables off from the ground truth
 | 
						|
      for (size_t j = 0; j < points.size(); ++j)
 | 
						|
        initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Update iSAM with the new factors
 | 
						|
      isam.update(graph, initialEstimate);
 | 
						|
      Values currentEstimate = isam.estimate();
 | 
						|
      cout << "****************************************************" << endl;
 | 
						|
      cout << "Frame " << i << ": " << endl;
 | 
						|
      currentEstimate.print("Current estimate: ");
 | 
						|
 | 
						|
      // Clear the factor graph and values for the next iteration
 | 
						|
      graph.resize(0);
 | 
						|
      initialEstimate.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
/* ************************************************************************* */
 |