293 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file LinearizedFactor.h
 | 
						|
 * @brief A dummy factor that allows a linear factor to act as a nonlinear factor
 | 
						|
 * @author Alex Cunningham
 | 
						|
 */
 | 
						|
 | 
						|
#pragma once
 | 
						|
 | 
						|
#include <vector>
 | 
						|
#include <gtsam_unstable/dllexport.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactor.h>
 | 
						|
#include <gtsam/linear/JacobianFactor.h>
 | 
						|
#include <gtsam/linear/HessianFactor.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/**
 | 
						|
 * A base factor class for the Jacobian and Hessian linearized factors
 | 
						|
 */
 | 
						|
class GTSAM_UNSTABLE_EXPORT LinearizedGaussianFactor : public NonlinearFactor {
 | 
						|
public:
 | 
						|
  /** base type */
 | 
						|
  typedef NonlinearFactor Base;
 | 
						|
  typedef LinearizedGaussianFactor This;
 | 
						|
 | 
						|
  /** shared pointer for convenience */
 | 
						|
  typedef boost::shared_ptr<LinearizedGaussianFactor> shared_ptr;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
  /** linearization points for error calculation */
 | 
						|
  Values lin_points_;
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  /** default constructor for serialization */
 | 
						|
  LinearizedGaussianFactor() {};
 | 
						|
 | 
						|
  /**
 | 
						|
   * @param gaussian:   A jacobian or hessian factor
 | 
						|
   * @param lin_points: The linearization points for, at least, the variables used by this factor
 | 
						|
   */
 | 
						|
  LinearizedGaussianFactor(const GaussianFactor::shared_ptr& gaussian, const Values& lin_points);
 | 
						|
 | 
						|
  virtual ~LinearizedGaussianFactor() {};
 | 
						|
 | 
						|
  // access functions
 | 
						|
  const Values& linearizationPoint() const { return lin_points_; }
 | 
						|
 | 
						|
private:
 | 
						|
  /** Serialization function */
 | 
						|
  friend class boost::serialization::access;
 | 
						|
  template<class ARCHIVE>
 | 
						|
  void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
 | 
						|
    ar & boost::serialization::make_nvp("LinearizedGaussianFactor",
 | 
						|
        boost::serialization::base_object<Base>(*this));
 | 
						|
    ar & BOOST_SERIALIZATION_NVP(lin_points_);
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * A factor that takes a linear, Jacobian factor and inserts it into
 | 
						|
 * a nonlinear graph.
 | 
						|
 */
 | 
						|
class GTSAM_UNSTABLE_EXPORT LinearizedJacobianFactor : public LinearizedGaussianFactor {
 | 
						|
 | 
						|
public:
 | 
						|
  /** base type */
 | 
						|
  typedef LinearizedGaussianFactor Base;
 | 
						|
  typedef LinearizedJacobianFactor This;
 | 
						|
 | 
						|
  /** shared pointer for convenience */
 | 
						|
  typedef boost::shared_ptr<LinearizedJacobianFactor> shared_ptr;
 | 
						|
 | 
						|
  typedef VerticalBlockMatrix::Block ABlock;
 | 
						|
  typedef VerticalBlockMatrix::constBlock constABlock;
 | 
						|
  typedef VerticalBlockMatrix::Block::ColXpr BVector;
 | 
						|
  typedef VerticalBlockMatrix::constBlock::ConstColXpr constBVector;
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
//  // store components of a jacobian factor
 | 
						|
//  typedef std::map<Key, Matrix> KeyMatrixMap;
 | 
						|
//  KeyMatrixMap matrices_;
 | 
						|
//  Vector b_;
 | 
						|
 | 
						|
  VerticalBlockMatrix Ab_;      // the block view of the full matrix
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  /** default constructor for serialization */
 | 
						|
  LinearizedJacobianFactor();
 | 
						|
 | 
						|
  /**
 | 
						|
   * @param jacobian:   A jacobian factor
 | 
						|
   * @param lin_points: The linearization points for, at least, the variables used by this factor
 | 
						|
   */
 | 
						|
  LinearizedJacobianFactor(const JacobianFactor::shared_ptr& jacobian, const Values& lin_points);
 | 
						|
 | 
						|
  virtual ~LinearizedJacobianFactor() {}
 | 
						|
 | 
						|
  /// @return a deep copy of this factor
 | 
						|
  gtsam::NonlinearFactor::shared_ptr clone() const override {
 | 
						|
    return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | 
						|
        gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
 | 
						|
 | 
						|
  // Testable
 | 
						|
 | 
						|
  /** print function */
 | 
						|
  void print(const std::string& s="", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
 | 
						|
 | 
						|
  /** equals function with optional tolerance */
 | 
						|
  bool equals(const NonlinearFactor& expected, double tol = 1e-9) const override;
 | 
						|
 | 
						|
  // access functions
 | 
						|
  const constBVector b() const { return Ab_(size()).col(0); }
 | 
						|
  const constABlock A() const { return Ab_.range(0, size()); };
 | 
						|
  const constABlock A(Key key) const { return Ab_(std::find(begin(), end(), key) - begin()); }
 | 
						|
 | 
						|
  /** get the dimension of the factor (number of rows on linearization) */
 | 
						|
  size_t dim() const override { return Ab_.rows(); };
 | 
						|
 | 
						|
  /** Calculate the error of the factor */
 | 
						|
  double error(const Values& c) const override;
 | 
						|
 | 
						|
  /**
 | 
						|
   * linearize to a GaussianFactor
 | 
						|
   * Reimplemented from NoiseModelFactor to directly copy out the
 | 
						|
   * matrices and only update the RHS b with an updated residual
 | 
						|
   */
 | 
						|
  boost::shared_ptr<GaussianFactor> linearize(const Values& c) const override;
 | 
						|
 | 
						|
  /** (A*x-b) */
 | 
						|
  Vector error_vector(const Values& c) const;
 | 
						|
 | 
						|
private:
 | 
						|
  /** Serialization function */
 | 
						|
  friend class boost::serialization::access;
 | 
						|
  template<class ARCHIVE>
 | 
						|
  void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
 | 
						|
    ar & boost::serialization::make_nvp("LinearizedJacobianFactor",
 | 
						|
        boost::serialization::base_object<Base>(*this));
 | 
						|
    ar & BOOST_SERIALIZATION_NVP(Ab_);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// traits
 | 
						|
template<>
 | 
						|
struct traits<LinearizedJacobianFactor> : public Testable<LinearizedJacobianFactor> {
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * A factor that takes a linear, Hessian factor and inserts it into
 | 
						|
 * a nonlinear graph.
 | 
						|
 */
 | 
						|
class GTSAM_UNSTABLE_EXPORT LinearizedHessianFactor : public LinearizedGaussianFactor {
 | 
						|
 | 
						|
public:
 | 
						|
  /** base type */
 | 
						|
  typedef LinearizedGaussianFactor Base;
 | 
						|
  typedef LinearizedHessianFactor This;
 | 
						|
 | 
						|
  /** shared pointer for convenience */
 | 
						|
  typedef boost::shared_ptr<LinearizedHessianFactor> shared_ptr;
 | 
						|
 | 
						|
  /** hessian block data types */
 | 
						|
  typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
 | 
						|
  typedef SymmetricBlockMatrix::constBlock constBlock; ///< A block from the Hessian matrix (const version)
 | 
						|
 | 
						|
  typedef SymmetricBlockMatrix::Block::ColXpr Column; ///< A column containing the linear term h
 | 
						|
  typedef SymmetricBlockMatrix::constBlock::ColXpr constColumn; ///< A column containing the linear term h (const version)
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
  SymmetricBlockMatrix info_; ///< The block view of the full information matrix, s.t. the quadratic
 | 
						|
                              ///  error is 0.5*[x -1]'*H*[x -1]
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  /** default constructor for serialization */
 | 
						|
  LinearizedHessianFactor();
 | 
						|
 | 
						|
  /**
 | 
						|
   * Use this constructor with the ordering used to linearize the graph
 | 
						|
   * @param hessian:    A hessian factor
 | 
						|
   * @param lin_points: The linearization points for, at least, the variables used by this factor
 | 
						|
   */
 | 
						|
  LinearizedHessianFactor(const HessianFactor::shared_ptr& hessian, const Values& lin_points);
 | 
						|
 | 
						|
  virtual ~LinearizedHessianFactor() {}
 | 
						|
 | 
						|
  /// @return a deep copy of this factor
 | 
						|
  gtsam::NonlinearFactor::shared_ptr clone() const override {
 | 
						|
    return boost::static_pointer_cast<gtsam::NonlinearFactor>(
 | 
						|
        gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
 | 
						|
 | 
						|
  // Testable
 | 
						|
 | 
						|
  /** print function */
 | 
						|
  void print(const std::string& s="", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
 | 
						|
 | 
						|
  /** equals function with optional tolerance */
 | 
						|
  bool equals(const NonlinearFactor& expected, double tol = 1e-9) const override;
 | 
						|
 | 
						|
  /** Return the constant term \f$ f \f$ as described above
 | 
						|
   * @return The constant term \f$ f \f$
 | 
						|
   */
 | 
						|
  double constantTerm() const {
 | 
						|
    const auto block = info_.diagonalBlock(size());
 | 
						|
    return block(0, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /** Return the part of linear term \f$ g \f$ as described above corresponding to the requested variable.
 | 
						|
   * @param j Which block row to get, as an iterator pointing to the slot in this factor.  You can
 | 
						|
   * use, for example, begin() + 2 to get the 3rd variable in this factor.
 | 
						|
   * @return The linear term \f$ g \f$ */
 | 
						|
  constColumn linearTerm(const_iterator j) const {
 | 
						|
    return info_.aboveDiagonalRange(j - begin(), size(), size(), size() + 1).col(0);
 | 
						|
  }
 | 
						|
 | 
						|
  /** Return the complete linear term \f$ g \f$ as described above.
 | 
						|
   * @return The linear term \f$ g \f$ */
 | 
						|
  constColumn linearTerm() const {
 | 
						|
    return info_.aboveDiagonalRange(0, size(), size(), size() + 1).col(0);
 | 
						|
  }
 | 
						|
 | 
						|
  /** Return a copy of the block at (j1,j2) of the <emph>upper-triangular part</emph> of the
 | 
						|
   * squared term \f$ H \f$, no data is copied.  See HessianFactor class documentation
 | 
						|
   * above to explain that only the upper-triangular part of the information matrix is stored
 | 
						|
   * and returned by this function.
 | 
						|
   * @param j1 Which block row to get, as an iterator pointing to the slot in this factor.  You can
 | 
						|
   * use, for example, begin() + 2 to get the 3rd variable in this factor.
 | 
						|
   * @param j2 Which block column to get, as an iterator pointing to the slot in this factor.  You can
 | 
						|
   * use, for example, begin() + 2 to get the 3rd variable in this factor.
 | 
						|
   * @return A copy of the requested block.
 | 
						|
   */
 | 
						|
  Matrix squaredTerm(const_iterator j1, const_iterator j2) const {
 | 
						|
    const DenseIndex J1 = j1 - begin();
 | 
						|
    const DenseIndex J2 = j2 - begin();
 | 
						|
    return info_.block(J1, J2);
 | 
						|
  }
 | 
						|
 | 
						|
  /** Return the <emph>upper-triangular part</emph> of the full squared term, as described above.
 | 
						|
   * See HessianFactor class documentation above to explain that only the
 | 
						|
   * upper-triangular part of the information matrix is stored and returned by this function.
 | 
						|
   */
 | 
						|
  Eigen::SelfAdjointView<constBlock, Eigen::Upper> squaredTerm() const {
 | 
						|
    return info_.selfadjointView(0, size());
 | 
						|
  }
 | 
						|
 | 
						|
  /** get the dimension of the factor (number of rows on linearization) */
 | 
						|
  size_t dim() const override { return info_.rows() - 1; }
 | 
						|
 | 
						|
  /** Calculate the error of the factor */
 | 
						|
  double error(const Values& c) const override;
 | 
						|
 | 
						|
  /**
 | 
						|
   * linearize to a GaussianFactor
 | 
						|
   * Reimplemented from NoiseModelFactor to directly copy out the
 | 
						|
   * matrices and only update the RHS b with an updated residual
 | 
						|
   */
 | 
						|
  boost::shared_ptr<GaussianFactor> linearize(const Values& c) const override;
 | 
						|
 | 
						|
private:
 | 
						|
  /** Serialization function */
 | 
						|
  friend class boost::serialization::access;
 | 
						|
  template<class ARCHIVE>
 | 
						|
  void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
 | 
						|
    ar & boost::serialization::make_nvp("LinearizedHessianFactor",
 | 
						|
        boost::serialization::base_object<Base>(*this));
 | 
						|
    ar & BOOST_SERIALIZATION_NVP(info_);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// traits
 | 
						|
template<>
 | 
						|
struct traits<LinearizedHessianFactor> : public Testable<LinearizedHessianFactor> {
 | 
						|
};
 | 
						|
 | 
						|
} // \namespace aspn
 |