84 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file  DiscreteBayesNetExample.cpp
 | |
|  * @brief   Discrete Bayes Net example with famous Asia Bayes Network
 | |
|  * @author  Frank Dellaert
 | |
|  * @date  JULY 10, 2020
 | |
|  */
 | |
| 
 | |
| #include <gtsam/discrete/DiscreteFactorGraph.h>
 | |
| #include <gtsam/discrete/DiscreteMarginals.h>
 | |
| #include <gtsam/inference/BayesNet.h>
 | |
| 
 | |
| #include <iomanip>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| int main(int argc, char **argv) {
 | |
|   DiscreteBayesNet asia;
 | |
|   DiscreteKey Asia(0, 2), Smoking(4, 2), Tuberculosis(3, 2), LungCancer(6, 2),
 | |
|       Bronchitis(7, 2), Either(5, 2), XRay(2, 2), Dyspnea(1, 2);
 | |
|   asia.add(Asia % "99/1");
 | |
|   asia.add(Smoking % "50/50");
 | |
| 
 | |
|   asia.add(Tuberculosis | Asia = "99/1 95/5");
 | |
|   asia.add(LungCancer | Smoking = "99/1 90/10");
 | |
|   asia.add(Bronchitis | Smoking = "70/30 40/60");
 | |
| 
 | |
|   asia.add((Either | Tuberculosis, LungCancer) = "F T T T");
 | |
| 
 | |
|   asia.add(XRay | Either = "95/5 2/98");
 | |
|   asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
 | |
| 
 | |
|   // print
 | |
|   vector<string> pretty = {"Asia",    "Dyspnea", "XRay",       "Tuberculosis",
 | |
|                            "Smoking", "Either",  "LungCancer", "Bronchitis"};
 | |
|   auto formatter = [pretty](Key key) { return pretty[key]; };
 | |
|   asia.print("Asia", formatter);
 | |
| 
 | |
|   // Convert to factor graph
 | |
|   DiscreteFactorGraph fg(asia);
 | |
| 
 | |
|   // Create solver and eliminate
 | |
|   Ordering ordering;
 | |
|   ordering += Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7);
 | |
|   DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
 | |
| 
 | |
|   // solve
 | |
|   DiscreteFactor::sharedValues mpe = chordal->optimize();
 | |
|   GTSAM_PRINT(*mpe);
 | |
| 
 | |
|   // We can also build a Bayes tree (directed junction tree).
 | |
|   // The elimination order above will do fine:
 | |
|   auto bayesTree = fg.eliminateMultifrontal(ordering);
 | |
|   bayesTree->print("bayesTree", formatter);
 | |
| 
 | |
|   // add evidence, we were in Asia and we have dyspnea
 | |
|   fg.add(Asia, "0 1");
 | |
|   fg.add(Dyspnea, "0 1");
 | |
| 
 | |
|   // solve again, now with evidence
 | |
|   DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
 | |
|   DiscreteFactor::sharedValues mpe2 = chordal2->optimize();
 | |
|   GTSAM_PRINT(*mpe2);
 | |
| 
 | |
|   // We can also sample from it
 | |
|   cout << "\n10 samples:" << endl;
 | |
|   for (size_t i = 0; i < 10; i++) {
 | |
|     DiscreteFactor::sharedValues sample = chordal2->sample();
 | |
|     GTSAM_PRINT(*sample);
 | |
|   }
 | |
|   return 0;
 | |
| }
 |