5747 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			Plaintext
		
	
	
			
		
		
	
	
			5747 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			Plaintext
		
	
	
| #LyX 2.0 created this file. For more info see http://www.lyx.org/
 | |
| \lyxformat 413
 | |
| \begin_document
 | |
| \begin_header
 | |
| \textclass article
 | |
| \use_default_options false
 | |
| \begin_modules
 | |
| eqs-within-sections
 | |
| figs-within-sections
 | |
| theorems-ams-bytype
 | |
| \end_modules
 | |
| \maintain_unincluded_children false
 | |
| \language english
 | |
| \language_package default
 | |
| \inputencoding auto
 | |
| \fontencoding global
 | |
| \font_roman times
 | |
| \font_sans default
 | |
| \font_typewriter default
 | |
| \font_default_family rmdefault
 | |
| \use_non_tex_fonts false
 | |
| \font_sc false
 | |
| \font_osf false
 | |
| \font_sf_scale 100
 | |
| \font_tt_scale 100
 | |
| 
 | |
| \graphics default
 | |
| \default_output_format default
 | |
| \output_sync 0
 | |
| \bibtex_command default
 | |
| \index_command default
 | |
| \paperfontsize 12
 | |
| \spacing single
 | |
| \use_hyperref false
 | |
| \papersize default
 | |
| \use_geometry true
 | |
| \use_amsmath 1
 | |
| \use_esint 0
 | |
| \use_mhchem 1
 | |
| \use_mathdots 1
 | |
| \cite_engine basic
 | |
| \use_bibtopic false
 | |
| \use_indices false
 | |
| \paperorientation portrait
 | |
| \suppress_date false
 | |
| \use_refstyle 0
 | |
| \index Index
 | |
| \shortcut idx
 | |
| \color #008000
 | |
| \end_index
 | |
| \leftmargin 1in
 | |
| \topmargin 1in
 | |
| \rightmargin 1in
 | |
| \bottommargin 1in
 | |
| \secnumdepth 3
 | |
| \tocdepth 3
 | |
| \paragraph_separation indent
 | |
| \paragraph_indentation default
 | |
| \quotes_language english
 | |
| \papercolumns 1
 | |
| \papersides 1
 | |
| \paperpagestyle default
 | |
| \tracking_changes false
 | |
| \output_changes false
 | |
| \html_math_output 0
 | |
| \html_css_as_file 0
 | |
| \html_be_strict false
 | |
| \end_header
 | |
| 
 | |
| \begin_body
 | |
| 
 | |
| \begin_layout Title
 | |
| Derivatives and Differentials
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Author
 | |
| Frank Dellaert
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Box Frameless
 | |
| position "t"
 | |
| hor_pos "c"
 | |
| has_inner_box 1
 | |
| inner_pos "t"
 | |
| use_parbox 0
 | |
| use_makebox 0
 | |
| width "100col%"
 | |
| special "none"
 | |
| height "1in"
 | |
| height_special "totalheight"
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\SqrMah}[3]{\Vert{#1}-{#2}\Vert_{#3}^{2}}
 | |
| {\Vert{#1}-{#2}\Vert_{#3}^{2}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\SqrZMah}[2]{\Vert{#1}\Vert_{#2}^{2}}
 | |
| {\Vert{#1}\Vert_{#2}^{2}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Rone}{\mathbb{R}}
 | |
| {\mathbb{R}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Reals}[1]{\mathbb{R}^{#1}}
 | |
| {\mathbb{R}^{#1}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\OneD}[1]{\Reals{#1}\rightarrow\Rone}
 | |
| {\Reals{#1}\rightarrow\Rone}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Multi}[2]{\Reals{#1}\rightarrow\Reals{#2}}
 | |
| {\Reals{#1}\rightarrow\Reals{#2}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Man}{\mathcal{M}}
 | |
| {\mathcal{M}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset Note Comment
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| Derivatives
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}}
 | |
| {\frac{\partial#1}{\partial#2}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\at}[2]{#1\biggr\rvert_{#2}}
 | |
| {#1\biggr\rvert_{#2}}
 | |
| \end_inset
 | |
| 
 | |
|  
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} }
 | |
| {\at{\deriv{#1}{#2}}{#3}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset Note Comment
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| Lie Groups
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\xhat}{\hat{x}}
 | |
| {\hat{x}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\yhat}{\hat{y}}
 | |
| {\hat{y}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Ad}[1]{Ad_{#1}}
 | |
| {Ad_{#1}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\define}{\stackrel{\Delta}{=}}
 | |
| {\stackrel{\Delta}{=}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\gg}{\mathfrak{g}}
 | |
| {\mathfrak{g}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Rn}{\mathbb{R}^{n}}
 | |
| {\mathbb{R}^{n}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset Note Comment
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| SO(2)
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Rtwo}{\mathbb{R}^{2}}
 | |
| {\mathbb{R}^{2}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\SOtwo}{SO(2)}
 | |
| {SO(2)}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\sotwo}{\mathfrak{so(2)}}
 | |
| {\mathfrak{so(2)}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\that}{\hat{\theta}}
 | |
| {\hat{\theta}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\skew}[1]{[#1]_{+}}
 | |
| {[#1]_{+}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset Note Comment
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| SE(2)
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\SEtwo}{SE(2)}
 | |
| {SE(2)}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\setwo}{\mathfrak{se(2)}}
 | |
| {\mathfrak{se(2)}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset Note Comment
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| SO(3)
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Rthree}{\mathbb{R}^{3}}
 | |
| {\mathbb{R}^{3}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\SOthree}{SO(3)}
 | |
| {SO(3)}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\sothree}{\mathfrak{so(3)}}
 | |
| {\mathfrak{so(3)}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\what}{\hat{\omega}}
 | |
| {\hat{\omega}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Skew}[1]{[#1]_{\times}}
 | |
| {[#1]_{\times}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset Note Comment
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| SE(3)
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\Rsix}{\mathbb{R}^{6}}
 | |
| {\mathbb{R}^{6}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\SEthree}{SE(3)}
 | |
| {SE(3)}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\sethree}{\mathfrak{se(3)}}
 | |
| {\mathfrak{se(3)}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\xihat}{\hat{\xi}}
 | |
| {\hat{\xi}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Part
 | |
| Theory
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Optimization
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| We will be concerned with minimizing a non-linear least squares objective
 | |
|  of the form 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| x^{*}=\arg\min_{x}\SqrMah{h(x)}z{\Sigma}\label{eq:objective}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $x\in\Man$
 | |
| \end_inset
 | |
| 
 | |
|  is a point on an 
 | |
| \begin_inset Formula $n$
 | |
| \end_inset
 | |
| 
 | |
| -dimensional manifold (which could be 
 | |
| \begin_inset Formula $\Reals n$
 | |
| \end_inset
 | |
| 
 | |
| , an n-dimensional Lie group 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
| , or a general manifold 
 | |
| \begin_inset Formula $\Man)$
 | |
| \end_inset
 | |
| 
 | |
| , 
 | |
| \begin_inset Formula $z\in\Reals m$
 | |
| \end_inset
 | |
| 
 | |
|  is an observed measurement, 
 | |
| \begin_inset Formula $h:\Man\rightarrow\Reals m$
 | |
| \end_inset
 | |
| 
 | |
|  is a measurement function that predicts 
 | |
| \begin_inset Formula $z$
 | |
| \end_inset
 | |
| 
 | |
|  from 
 | |
| \begin_inset Formula $x$
 | |
| \end_inset
 | |
| 
 | |
| , and 
 | |
| \begin_inset Formula $\SqrZMah e{\Sigma}\define e^{T}\Sigma^{-1}e$
 | |
| \end_inset
 | |
| 
 | |
|  is the squared Mahalanobis distance with covariance 
 | |
| \begin_inset Formula $\Sigma$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| To minimize 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:objective"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  we need a notion of how the non-linear measurement function 
 | |
| \begin_inset Formula $h(x)$
 | |
| \end_inset
 | |
| 
 | |
|  behaves in the neighborhood of a linearization point 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Loosely speaking, we would like to define an 
 | |
| \begin_inset Formula $m\times n$
 | |
| \end_inset
 | |
| 
 | |
|  Jacobian matrix 
 | |
| \begin_inset Formula $H_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  such that
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| h(a\oplus\xi)\approx h(a)+H_{a}\xi\label{eq:LocalBehavior}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with 
 | |
| \begin_inset Formula $\xi\in\Reals n$
 | |
| \end_inset
 | |
| 
 | |
| , and the operation 
 | |
| \begin_inset Formula $\oplus$
 | |
| \end_inset
 | |
| 
 | |
|  
 | |
| \begin_inset Quotes eld
 | |
| \end_inset
 | |
| 
 | |
| increments
 | |
| \begin_inset Quotes erd
 | |
| \end_inset
 | |
| 
 | |
|  
 | |
| \begin_inset Formula $a\in\Man$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Below we more formally develop this notion, first for functions from 
 | |
| \begin_inset Formula $\Multi nm$
 | |
| \end_inset
 | |
| 
 | |
| , then for Lie groups, and finally for manifolds.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Once equipped with the approximation 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:LocalBehavior"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we can minimize the objective function 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:objective"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  with respect to 
 | |
| \begin_inset Formula $\delta x$
 | |
| \end_inset
 | |
| 
 | |
|  instead:
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \xi^{*}=\arg\min_{\xi}\SqrMah{h(a)+H_{a}\xi}z{\Sigma}\label{eq:ApproximateObjective}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| This can be done by setting the derivative of 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:ApproximateObjective"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  to zero,
 | |
| \begin_inset Note Note
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
|  
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{1}{2}H_{a}^{T}(h(a)+H_{a}\xi-z)=0
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  yielding the 
 | |
| \series bold
 | |
| normal equations
 | |
| \series default
 | |
| ,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| H_{a}^{T}H_{a}\xi=H_{a}^{T}\left(z-h(a)\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| which can be solved using Cholesky factorization.
 | |
|  Of course, we might have to iterate this multiple times, and use a trust-region
 | |
|  method to bound 
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
|  when the approximation 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:LocalBehavior"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  is not good.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Multivariate Differentiation
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Derivatives
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| For a vector space 
 | |
| \begin_inset Formula $\Reals n$
 | |
| \end_inset
 | |
| 
 | |
| , the notion of an increment is just done by vector addition
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| a\oplus\xi\define a+\xi
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and for the approximation 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "eq:LocalBehavior"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  we will use a Taylor expansion using multivariate differentiation.
 | |
|  However, loosely following 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| key "Spivak65book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we use a perhaps unfamiliar way to define derivatives:
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Definition
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "def:differentiable"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| We define a function 
 | |
| \begin_inset Formula $f:\Multi nm$
 | |
| \end_inset
 | |
| 
 | |
|  to be 
 | |
| \series bold
 | |
| differentiable
 | |
| \series default
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  if there exists a matrix 
 | |
| \begin_inset Formula $f'(a)\in\Reals{m\times n}$
 | |
| \end_inset
 | |
| 
 | |
|  such that 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \lim_{\delta x\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f(a+\xi)\right|}{\left|\xi\right|}=0
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $\left|e\right|\define\sqrt{e^{T}e}$
 | |
| \end_inset
 | |
| 
 | |
|  is the usual norm.
 | |
|  If 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  is differentiable, then the matrix 
 | |
| \begin_inset Formula $f'(a)$
 | |
| \end_inset
 | |
| 
 | |
|  is called the 
 | |
| \series bold
 | |
| Jacobian matrix
 | |
| \series default
 | |
|  of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| , and the linear map 
 | |
| \begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
 | |
| \end_inset
 | |
| 
 | |
|  is called the 
 | |
| \series bold
 | |
| derivative
 | |
| \series default
 | |
|  of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  When no confusion is likely, we use the notation 
 | |
| \begin_inset Formula $F_{a}\define f'(a)$
 | |
| \end_inset
 | |
| 
 | |
|  to stress that 
 | |
| \begin_inset Formula $f'(a)$
 | |
| \end_inset
 | |
| 
 | |
|  is a matrix.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The benefit of using this definition is that it generalizes the notion of
 | |
|  a scalar derivative 
 | |
| \begin_inset Formula $f'(a):\Rone\rightarrow\Rone$
 | |
| \end_inset
 | |
| 
 | |
|  to multivariate functions from 
 | |
| \begin_inset Formula $\Multi nm$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  In particular, the derivative 
 | |
| \begin_inset Formula $Df_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  maps vector increments 
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
|  on 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  to increments 
 | |
| \begin_inset Formula $f'(a)\xi$
 | |
| \end_inset
 | |
| 
 | |
|  on 
 | |
| \begin_inset Formula $f(a)$
 | |
| \end_inset
 | |
| 
 | |
| , such that this linear map locally approximates 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f(a+\xi)\approx f(a)+f'(a)\xi
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "ex:projection"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The function 
 | |
| \begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
 | |
| \end_inset
 | |
| 
 | |
|  projects a 3D point 
 | |
| \begin_inset Formula $(x,y,z)$
 | |
| \end_inset
 | |
| 
 | |
|  to the image plane, and has the Jacobian matrix
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \pi'(x,y,z)=\frac{1}{z}\left[\begin{array}{ccc}
 | |
| 1 & 0 & -x/z\\
 | |
| 0 & 1 & -y/z
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Properties of Derivatives
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| This notion of a multivariate derivative obeys the usual rules:
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| (Chain rule) If 
 | |
| \begin_inset Formula $f:\Multi np$
 | |
| \end_inset
 | |
| 
 | |
|  is differentiable at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $g:\Multi pm$
 | |
| \end_inset
 | |
| 
 | |
|  is differentiable at 
 | |
| \begin_inset Formula $f(a)$
 | |
| \end_inset
 | |
| 
 | |
| ,
 | |
| \begin_inset Note Note
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \strikeout off
 | |
| \uuline off
 | |
| \uwave off
 | |
| \noun off
 | |
| \color none
 | |
|  then 
 | |
| \begin_inset Formula $D(g\circ f)_{a}=Dg_{f(a)}\circ Df_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  and
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  then the Jacobian matrix 
 | |
| \begin_inset Formula $H_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  of 
 | |
| \begin_inset Formula $h=g\circ f$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  is the 
 | |
| \begin_inset Formula $m\times n$
 | |
| \end_inset
 | |
| 
 | |
|  matrix product 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| H_{a}=G_{f(a)}F_{a}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| See 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| key "Spivak65book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "ex:chain-rule"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| If we follow the projection 
 | |
| \begin_inset Formula $\pi$
 | |
| \end_inset
 | |
| 
 | |
|  by a calibration step 
 | |
| \begin_inset Formula $\gamma:(x,y)\mapsto(u_{0}+fx,u_{0}+fy)$
 | |
| \end_inset
 | |
| 
 | |
| , with 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \gamma'(x,y)=\left[\begin{array}{cc}
 | |
| f & 0\\
 | |
| 0 & f
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| then the combined function 
 | |
| \begin_inset Formula $\gamma\circ\pi$
 | |
| \end_inset
 | |
| 
 | |
|  has the Jacobian matrix
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| (\gamma\circ\pi)'(x,y)=\frac{f}{z}\left[\begin{array}{ccc}
 | |
| 1 & 0 & -x/z\\
 | |
| 0 & 1 & -y/z
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| (Inverse) If 
 | |
| \begin_inset Formula $f:\Multi nn$
 | |
| \end_inset
 | |
| 
 | |
|  is differentiable and has a differentiable inverse 
 | |
| \begin_inset Formula $g\define f^{-1}$
 | |
| \end_inset
 | |
| 
 | |
| , then its Jacobian matrix 
 | |
| \begin_inset Formula $G_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  is just the inverse of that of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
| , evaluated at 
 | |
| \begin_inset Formula $g(a)$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| G_{a}=\left[F_{g(a)}\right]^{-1}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| See 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| key "Spivak65book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "ex:inverse"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The function 
 | |
| \begin_inset Formula $f:(x,y)\mapsto(x^{2},xy)$
 | |
| \end_inset
 | |
| 
 | |
|  has the Jacobian matrix
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| F_{(x,y)}=\left[\begin{array}{cc}
 | |
| 2x & 0\\
 | |
| y & x
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and, for 
 | |
| \begin_inset Formula $x\geq0$
 | |
| \end_inset
 | |
| 
 | |
| , its inverse is the function 
 | |
| \begin_inset Formula $g:(x,y)\mapsto(x^{1/2},x^{-1/2}y)$
 | |
| \end_inset
 | |
| 
 | |
|  with the Jacobian matrix
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| G_{(x,y)}=\frac{1}{2}\left[\begin{array}{cc}
 | |
| x^{-1/2} & 0\\
 | |
| -x^{-3/2}y & 2x^{-1/2}
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| It is easily verified that
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| g'(a,b)f'(a^{1/2},a^{-1/2}b)=\frac{1}{2}\left[\begin{array}{cc}
 | |
| a^{-1/2} & 0\\
 | |
| -a^{-3/2}b & 2a^{-1/2}
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| 2a^{1/2} & 0\\
 | |
| a^{-1/2}b & a^{1/2}
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| 1 & 0\\
 | |
| 0 & 1
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Problem
 | |
| Verify the above for 
 | |
| \begin_inset Formula $(a,b)=(4,6)$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Sketch the situation graphically to get insight.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Computing Multivariate Derivatives
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Computing derivatives is made easy by defining the concept of a partial
 | |
|  derivative:
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Definition
 | |
| For 
 | |
| \begin_inset Formula $f:\OneD n$
 | |
| \end_inset
 | |
| 
 | |
| , the 
 | |
| \series bold
 | |
| partial derivative
 | |
| \series default
 | |
|  of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| ,
 | |
| \series bold
 | |
|  
 | |
| \series default
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| D_{j}f(a)\define\lim_{h\rightarrow0}\frac{f\left(a^{1},\ldots,a^{j}+h,\ldots,a^{n}\right)-f\left(a^{1},\ldots,a^{n}\right)}{h}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| which is the ordinary derivative of the scalar function 
 | |
| \begin_inset Formula $g(x)\define f\left(a^{1},\ldots,x,\ldots,a^{n}\right)$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Using this definition, one can show that the Jacobian matrix 
 | |
| \begin_inset Formula $F_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  of a differentiable 
 | |
| \emph on
 | |
| multivariate
 | |
| \emph default
 | |
|  function 
 | |
| \begin_inset Formula $f:\Multi nm$
 | |
| \end_inset
 | |
| 
 | |
|  consists simply of the 
 | |
| \begin_inset Formula $m\times n$
 | |
| \end_inset
 | |
| 
 | |
|  partial derivatives 
 | |
| \begin_inset Formula $D_{j}f^{i}(a)$
 | |
| \end_inset
 | |
| 
 | |
| , evaluated at 
 | |
| \begin_inset Formula $a\in\Reals n$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| F_{a}=\left[\begin{array}{ccc}
 | |
| D_{1}f^{1}(a) & \cdots & D_{n}f^{1}(a)\\
 | |
| \vdots & \ddots & \vdots\\
 | |
| D_{1}f^{m}(a) & \ldots & D_{n}f^{m}(a)
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Problem
 | |
| Verify the derivatives in Examples 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "ex:projection"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  to 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "ex:inverse"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Newpage pagebreak
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Multivariate Functions on Lie Groups
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Lie Groups
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Lie groups are not as easy to treat as the vector space 
 | |
| \begin_inset Formula $\Reals n$
 | |
| \end_inset
 | |
| 
 | |
|  but nevertheless have a lot of structure.
 | |
|  To generalize the concept of the total derivative above we just need to
 | |
|  replace 
 | |
| \begin_inset Formula $a\oplus\xi$
 | |
| \end_inset
 | |
| 
 | |
|  in 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:ApproximateObjective"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  with a suitable operation in the Lie group 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  In particular, the notion of an exponential map allows us to define an
 | |
|  incremental transformation as tracing out a geodesic curve on the group
 | |
|  manifold along a certain 
 | |
| \series bold
 | |
| tangent vector
 | |
| \series default
 | |
|  
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
| , 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| a\oplus\xi\define a\exp\left(\hat{\xi}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with 
 | |
| \begin_inset Formula $\xi\in\Reals n$
 | |
| \end_inset
 | |
| 
 | |
|  for an 
 | |
| \begin_inset Formula $n$
 | |
| \end_inset
 | |
| 
 | |
| -dimensional Lie group, 
 | |
| \begin_inset Formula $\hat{\xi}\in\mathfrak{g}$
 | |
| \end_inset
 | |
| 
 | |
|  the Lie algebra element corresponding to the vector 
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
| , and 
 | |
| \begin_inset Formula $\exp\hat{\xi}$
 | |
| \end_inset
 | |
| 
 | |
|  the exponential map.
 | |
|  Note that if 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
|  is equal to 
 | |
| \begin_inset Formula $\Reals n$
 | |
| \end_inset
 | |
| 
 | |
|  then composing with the exponential map 
 | |
| \begin_inset Formula $ae^{\xihat}$
 | |
| \end_inset
 | |
| 
 | |
|  is just vector addition 
 | |
| \begin_inset Formula $a+\xi$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| For the Lie group 
 | |
| \begin_inset Formula $\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  of 3D rotations the vector 
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
|  is denoted as 
 | |
| \begin_inset Formula $\omega$
 | |
| \end_inset
 | |
| 
 | |
|  and represents an angular displacement.
 | |
|  The Lie algebra element 
 | |
| \begin_inset Formula $\xihat$
 | |
| \end_inset
 | |
| 
 | |
|  is a skew symmetric matrix denoted as 
 | |
| \begin_inset Formula $\Skew{\omega}\in\sothree$
 | |
| \end_inset
 | |
| 
 | |
| , and is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Skew{\omega}=\left[\begin{array}{ccc}
 | |
| 0 & -\omega_{z} & \omega_{y}\\
 | |
| \omega_{z} & 0 & -\omega_{x}\\
 | |
| -\omega_{y} & \omega_{x} & 0
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Finally, the increment 
 | |
| \begin_inset Formula $a\oplus\xi=ae^{\xihat}$
 | |
| \end_inset
 | |
| 
 | |
|  corresponds to an incremental rotation 
 | |
| \begin_inset Formula $R\oplus\omega=Re^{\Skew{\omega}}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Derivatives
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| We can generalize Definition 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "def:differentiable"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  to map exponential coordinates 
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
|  to increments 
 | |
| \begin_inset Formula $f'(a)\xi$
 | |
| \end_inset
 | |
| 
 | |
|  on 
 | |
| \begin_inset Formula $f(a)$
 | |
| \end_inset
 | |
| 
 | |
| , such that the linear map 
 | |
| \begin_inset Formula $Df_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  locally approximates a function 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  from 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
|  to 
 | |
| \begin_inset Formula $\Reals m$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f(ae^{\xihat})\approx f(a)+f'(a)\xi
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Definition
 | |
| We define a function 
 | |
| \begin_inset Formula $f:G\rightarrow\Reals m$
 | |
| \end_inset
 | |
| 
 | |
|  to be 
 | |
| \series bold
 | |
| differentiable
 | |
| \series default
 | |
|  at 
 | |
| \begin_inset Formula $a\in G$
 | |
| \end_inset
 | |
| 
 | |
|  if there exists a matrix 
 | |
| \begin_inset Formula $f'(a)\in\Reals{m\times n}$
 | |
| \end_inset
 | |
| 
 | |
|  such that
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \lim_{\xi\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f(ae^{\hat{\xi}})\right|}{\left|\xi\right|}=0
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| If 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  is differentiable, then the matrix 
 | |
| \begin_inset Formula $f'(a)$
 | |
| \end_inset
 | |
| 
 | |
|  is called the 
 | |
| \series bold
 | |
| Jacobian matrix
 | |
| \series default
 | |
|  of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| , and the linear map 
 | |
| \begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
 | |
| \end_inset
 | |
| 
 | |
|  is called the 
 | |
| \series bold
 | |
| derivative
 | |
| \series default
 | |
|  of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Note that the vectors 
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
|  can be viewed as lying in the tangent space to 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| , but defining this rigorously would take us on a longer tour of differential
 | |
|  geometry.
 | |
|  Informally, 
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
|  is simply the direction, in a local coordinate frame, that is locally tangent
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  to a geodesic curve 
 | |
| \begin_inset Formula $\gamma:t\mapsto ae^{\widehat{t\xi}}$
 | |
| \end_inset
 | |
| 
 | |
|  traced out by the exponential map, with 
 | |
| \begin_inset Formula $\gamma(0)=a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Derivative of an Action
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "sec:Derivatives-of-Actions"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The (usual) action of an 
 | |
| \begin_inset Formula $n$
 | |
| \end_inset
 | |
| 
 | |
| -dimensional matrix group 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
|  is matrix-vector multiplication on 
 | |
| \begin_inset Formula $\mathbb{R}^{n}$
 | |
| \end_inset
 | |
| 
 | |
| , i.e., 
 | |
| \begin_inset Formula $f:G\times\Reals n\rightarrow\Reals n$
 | |
| \end_inset
 | |
| 
 | |
|  with 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f(T,p)=Tp
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Since this is a function defined on the product 
 | |
| \begin_inset Formula $G\times\Reals n$
 | |
| \end_inset
 | |
| 
 | |
|  the derivative is a linear transformation 
 | |
| \begin_inset Formula $Df:\Multi{2n}n$
 | |
| \end_inset
 | |
| 
 | |
|  with
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| Df_{(T,p)}\left(\xi,\delta p\right)=D_{1}f_{(T,p)}\left(\xi\right)+D_{2}f_{(T,p)}\left(\delta p\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "th:Action"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The Jacobian matrix of the group action
 | |
| \begin_inset Formula $f(T,P)=Tp$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $(T,p)$
 | |
| \end_inset
 | |
| 
 | |
|  is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| F_{(T,p)}=\left[\begin{array}{cc}
 | |
| TH(p) & T\end{array}\right]=T\left[\begin{array}{cc}
 | |
| H(p) & I_{n}\end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with 
 | |
| \begin_inset Formula $H:\Reals n\rightarrow\Reals{n\times n}$
 | |
| \end_inset
 | |
| 
 | |
|  a linear mapping that depends on 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| , and 
 | |
| \begin_inset Formula $I_{n}$
 | |
| \end_inset
 | |
| 
 | |
|  the 
 | |
| \begin_inset Formula $n\times n$
 | |
| \end_inset
 | |
| 
 | |
|  identity matrix.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| First, the derivative 
 | |
| \begin_inset Formula $D_{2}f$
 | |
| \end_inset
 | |
| 
 | |
|  with respect to in 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
|  is easy, as its matrix is simply T:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f(T,p+\delta p)=T(p+\delta p)=Tp+T\delta p=f(T,p)+D_{2}f(\delta p)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| For the derivative 
 | |
| \begin_inset Formula $D_{1}f$
 | |
| \end_inset
 | |
| 
 | |
|  with respect to a change in the first argument 
 | |
| \begin_inset Formula $T$
 | |
| \end_inset
 | |
| 
 | |
| , we want
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \strikeout off
 | |
| \uuline off
 | |
| \uwave off
 | |
| \noun off
 | |
| \color none
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f(Te^{\hat{\xi}},p)=Te^{\hat{\xi}}p\approx Tp+D_{1}f(\xi)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \family default
 | |
| \series default
 | |
| \shape default
 | |
| \size default
 | |
| \emph default
 | |
| \bar default
 | |
| \strikeout default
 | |
| \uuline default
 | |
| \uwave default
 | |
| \noun default
 | |
| \color inherit
 | |
| Since the matrix exponential is given by the series 
 | |
| \begin_inset Formula $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots$
 | |
| \end_inset
 | |
| 
 | |
|  we have, to first order
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| Te^{\hat{\xi}}p\approx T(I+\hat{\xi})p=Tp+T\hat{\xi}p
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Note Note
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| Note also that
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| T\hat{\xi}p=\left(T\hat{\xi}T^{-1}\right)Tp=\left(\Ad T\xihat\right)\left(Tp\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Hence, we need to show that 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \xihat p=H(p)\xi\label{eq:Hp}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with 
 | |
| \begin_inset Formula $H(p)$
 | |
| \end_inset
 | |
| 
 | |
|  an 
 | |
| \begin_inset Formula $n\times n$
 | |
| \end_inset
 | |
| 
 | |
|  matrix that depends on 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Expressing the map 
 | |
| \begin_inset Formula $\xi\rightarrow\hat{\xi}$
 | |
| \end_inset
 | |
| 
 | |
|  in terms of the Lie algebra generators 
 | |
| \begin_inset Formula $G^{i}$
 | |
| \end_inset
 | |
| 
 | |
| , using tensors and Einstein summation, we have 
 | |
| \begin_inset Formula $\hat{\xi}_{j}^{i}=G_{jk}^{i}\xi^{k}$
 | |
| \end_inset
 | |
| 
 | |
|  allowing us to calculate 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \noun off
 | |
| \color none
 | |
| 
 | |
| \begin_inset Formula $\hat{\xi}p$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \family default
 | |
| \series default
 | |
| \shape default
 | |
| \size default
 | |
| \emph default
 | |
| \bar default
 | |
| \noun default
 | |
| \color inherit
 | |
|  as
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \left(\hat{\xi}p\right)^{i}=\hat{\xi}_{j}^{i}p^{j}=G_{jk}^{i}\xi^{k}p^{j}=\left(G_{jk}^{i}p^{j}\right)\xi^{k}=H_{k}^{i}(p)\xi^{k}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| For 3D rotations 
 | |
| \begin_inset Formula $R\in\SOthree$
 | |
| \end_inset
 | |
| 
 | |
| , we have 
 | |
| \begin_inset Formula $\hat{\omega}=\Skew{\omega}$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| G_{k=1}:\left(\begin{array}{ccc}
 | |
| 0 & 0 & 0\\
 | |
| 0 & 0 & -1\\
 | |
| 0 & 1 & 0
 | |
| \end{array}\right)\mbox{}G_{k=2}:\left(\begin{array}{ccc}
 | |
| 0 & 0 & 1\\
 | |
| 0 & 0 & 0\\
 | |
| -1 & 0 & 0
 | |
| \end{array}\right)\mbox{ }G_{k=3}:\left(\begin{array}{ccc}
 | |
| 0 & -1 & 0\\
 | |
| 1 & 0 & 0\\
 | |
| 0 & 0 & 0
 | |
| \end{array}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \noun off
 | |
| \color none
 | |
| The matrices 
 | |
| \begin_inset Formula $\left(G_{k}^{i}\right)_{j}$
 | |
| \end_inset
 | |
| 
 | |
|  are obtained by assembling the 
 | |
| \begin_inset Formula $j^{th}$
 | |
| \end_inset
 | |
| 
 | |
|  columns of the generators above, yielding 
 | |
| \begin_inset Formula $H(p)$
 | |
| \end_inset
 | |
| 
 | |
|  equal to:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \left(\begin{array}{ccc}
 | |
| 0 & 0 & 0\\
 | |
| 0 & 0 & 1\\
 | |
| 0 & -1 & 0
 | |
| \end{array}\right)p^{1}+\left(\begin{array}{ccc}
 | |
| 0 & 0 & -1\\
 | |
| 0 & 0 & 0\\
 | |
| 1 & 0 & 0
 | |
| \end{array}\right)p^{2}+\left(\begin{array}{ccc}
 | |
| 0 & 1 & 0\\
 | |
| -1 & 0 & 0\\
 | |
| 0 & 0 & 0
 | |
| \end{array}\right)p^{3}=\left(\begin{array}{ccc}
 | |
| 0 & p^{3} & -p^{2}\\
 | |
| -p^{3} & 0 & p^{1}\\
 | |
| p^{2} & -p^{1} & 0
 | |
| \end{array}\right)=\Skew{-p}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \family default
 | |
| \series default
 | |
| \shape default
 | |
| \size default
 | |
| \emph default
 | |
| \bar default
 | |
| \noun default
 | |
| \color inherit
 | |
| Hence, the Jacobian matrix of 
 | |
| \begin_inset Formula $f(R,p)=Rp$
 | |
| \end_inset
 | |
| 
 | |
|  is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| F_{(R,p)}=R\left(\begin{array}{cc}
 | |
| \Skew{-p} & I_{3}\end{array}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Derivative of an Inverse Action
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Applying the action by the inverse of 
 | |
| \begin_inset Formula $T\in G$
 | |
| \end_inset
 | |
| 
 | |
|  yields a function 
 | |
| \begin_inset Formula $g:G\times\Reals n\rightarrow\Reals n$
 | |
| \end_inset
 | |
| 
 | |
|  defined by 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| g(T,p)=T^{-1}p
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "Th:InverseAction"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The Jacobian matrix of the inverse group action 
 | |
| \begin_inset Formula $g(T,p)=T^{-1}p$
 | |
| \end_inset
 | |
| 
 | |
|  is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| G_{(T,p)}=\left[\begin{array}{cc}
 | |
| -H(T^{-1}p) & T^{-1}\end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $H:\Reals n\rightarrow\Reals{n\times n}$
 | |
| \end_inset
 | |
| 
 | |
|  is the same mapping as before.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| Again, the derivative 
 | |
| \begin_inset Formula $D_{2}g$
 | |
| \end_inset
 | |
| 
 | |
|  with respect to in 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
|  is easy, the matrix of which is simply 
 | |
| \begin_inset Formula $T^{-1}$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| g(T,p+\delta p)=T^{-1}(p+\delta p)=T^{-1}p+T^{-1}\delta p=g(T,p)+D_{2}g(\delta p)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Conversely, a change in 
 | |
| \begin_inset Formula $T$
 | |
| \end_inset
 | |
| 
 | |
|  yields
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| g(Te^{\xihat},p)=\left(Te^{\xihat}\right)^{-1}p=e^{-\xihat}T^{-1}p
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Similar to before, if we expand the matrix exponential we get
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| e^{-A}=I-A+\frac{A^{2}}{2!}-\frac{A^{3}}{3!}+\ldots
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| so
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| e^{-\xihat}T^{-1}p\approx(I-\xihat)T^{-1}p=g(T,p)-\xihat\left(T^{-1}p\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| For 3D rotations 
 | |
| \begin_inset Formula $R\in\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  we have 
 | |
| \begin_inset Formula $R^{-1}=R^{T}$
 | |
| \end_inset
 | |
| 
 | |
| , 
 | |
| \begin_inset Formula $H(p)=-\Skew p$
 | |
| \end_inset
 | |
| 
 | |
| , and hence the Jacobian matrix of 
 | |
| \begin_inset Formula $g(R,p)=R^{T}p$
 | |
| \end_inset
 | |
| 
 | |
|  is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| G_{(R,p)}=\left(\begin{array}{cc}
 | |
| \Skew{R^{T}p} & R^{T}\end{array}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Note Note
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| My earlier attempt: because the wedge operator is linear, we have
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| f(\xi+x) & = & \exp\widehat{\left(\xi+x\right)}\\
 | |
|  & = & \exp\left(\xihat+\hat{x}\right)
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| However, except for commutative Lie groups, it is not true that 
 | |
| \begin_inset Formula $\exp\left(\xihat+\hat{x}\right)=\exp\xihat\exp\hat{x}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  However, if we expand the matrix exponential to second order and assume
 | |
|  
 | |
| \begin_inset Formula $x\rightarrow0$
 | |
| \end_inset
 | |
| 
 | |
|  we do have
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \exp\left(\xihat+\hat{x}\right)\approx I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Now, if we ask what 
 | |
| \begin_inset Formula $\hat{y}$
 | |
| \end_inset
 | |
| 
 | |
|  would effect the same change:
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| \exp\xihat\exp\yhat & = & I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat\\
 | |
| \exp\xihat(I+\yhat) & = & I+\xihat+\hat{x}+\frac{1}{2}\xihat^{2}+\xhat\xihat\\
 | |
| \left(\exp\xihat\right)\yhat & = & \xhat+\xhat\xihat
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Instantaneous Velocity
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| For matrix Lie groups, if we have a matrix 
 | |
| \begin_inset Formula $T_{b}^{n}(t)$
 | |
| \end_inset
 | |
| 
 | |
|  that depends on a parameter 
 | |
| \begin_inset Formula $t$
 | |
| \end_inset
 | |
| 
 | |
| , i.e., 
 | |
| \begin_inset Formula $T_{b}^{n}(t)$
 | |
| \end_inset
 | |
| 
 | |
|  follows a curve on the manifold, then it would be of interest to find the
 | |
|  velocity of a point 
 | |
| \begin_inset Formula $q^{n}(t)=T_{b}^{n}(t)p^{b}$
 | |
| \end_inset
 | |
| 
 | |
|  acted upon by 
 | |
| \begin_inset Formula $T_{b}^{n}(t)$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  We can express the velocity of 
 | |
| \begin_inset Formula $q(t)$
 | |
| \end_inset
 | |
| 
 | |
|  in both the n-frame and b-frame: 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \dot{q}^{n}=\dot{T}_{b}^{n}p^{b}=\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}p^{n}\mbox{\,\,\,\,\ and\,\,\,\,}\dot{q}^{b}=\left(T_{b}^{n}\right)^{-1}\dot{q}^{n}=\left(T_{b}^{n}\right)^{-1}\dot{T}_{b}^{n}p^{b}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Both the matrices 
 | |
| \begin_inset Formula $\xihat_{nb}^{n}\define\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $\xihat_{nb}^{b}\define\left(T_{b}^{n}\right)^{-1}\dot{T}_{b}^{n}$
 | |
| \end_inset
 | |
| 
 | |
|  are skew-symmetric Lie algebra elements that describe the 
 | |
| \series bold
 | |
| instantaneous velocity 
 | |
| \series default
 | |
| 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| after "page 51 for rotations, page 419 for SE(3)"
 | |
| key "Murray94book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  We will revisit this for both rotations and rigid 3D transformations.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Differentials: Smooth Mapping between Lie Groups
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Motivation and Definition
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The above shows how to compute the derivative of a function 
 | |
| \begin_inset Formula $f:G\rightarrow\Reals m$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  However, what if the argument to 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  is itself the result of a mapping between Lie groups? In other words, 
 | |
| \begin_inset Formula $f=g\circ\varphi$
 | |
| \end_inset
 | |
| 
 | |
| , with 
 | |
| \begin_inset Formula $g:G\rightarrow\Reals m$
 | |
| \end_inset
 | |
| 
 | |
|  and where 
 | |
| \begin_inset Formula $\varphi:H\rightarrow G$
 | |
| \end_inset
 | |
| 
 | |
|  is a smooth mapping from the 
 | |
| \begin_inset Formula $n$
 | |
| \end_inset
 | |
| 
 | |
| -dimensional Lie group 
 | |
| \begin_inset Formula $H$
 | |
| \end_inset
 | |
| 
 | |
|  to the 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| -dimensional Lie group 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  In this case, one would expect that we can arrive at 
 | |
| \begin_inset Formula $Df_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  by composing linear maps, as follows:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f'(a)=(g\circ\varphi)'(a)=G_{\varphi(a)}\varphi'(a)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $\varphi'(a)$
 | |
| \end_inset
 | |
| 
 | |
|  is an 
 | |
| \begin_inset Formula $n\times p$
 | |
| \end_inset
 | |
| 
 | |
|  matrix that is the best linear approximation to the map 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \strikeout off
 | |
| \uuline off
 | |
| \uwave off
 | |
| \noun off
 | |
| \color none
 | |
| 
 | |
| \begin_inset Formula $\varphi:H\rightarrow G$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  The corresponding linear map 
 | |
| \begin_inset Formula $D\varphi_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  is called the 
 | |
| \family default
 | |
| \series bold
 | |
| \shape default
 | |
| \size default
 | |
| \emph default
 | |
| \bar default
 | |
| \strikeout default
 | |
| \uuline default
 | |
| \uwave default
 | |
| \noun default
 | |
| \color inherit
 | |
| differential
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \strikeout off
 | |
| \uuline off
 | |
| \uwave off
 | |
| \noun off
 | |
| \color none
 | |
|  
 | |
| \family default
 | |
| \series default
 | |
| \shape default
 | |
| \size default
 | |
| \emph default
 | |
| \bar default
 | |
| \strikeout default
 | |
| \uuline default
 | |
| \uwave default
 | |
| \noun default
 | |
| \color inherit
 | |
| or 
 | |
| \series bold
 | |
| pushforward
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \strikeout off
 | |
| \uuline off
 | |
| \uwave off
 | |
| \noun off
 | |
| \color none
 | |
|  of 
 | |
| \begin_inset Formula $ $
 | |
| \end_inset
 | |
| 
 | |
| the mapping 
 | |
| \begin_inset Formula $\varphi$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \strikeout off
 | |
| \uuline off
 | |
| \uwave off
 | |
| \noun off
 | |
| \color none
 | |
| Because a rigorous definition will lead us too far astray, here we only
 | |
|  informally define the pushforward of 
 | |
| \begin_inset Formula $\varphi$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  as the linear map 
 | |
| \begin_inset Formula $D\varphi_{a}:\Multi np$
 | |
| \end_inset
 | |
| 
 | |
|  such that 
 | |
| \begin_inset Formula $D\varphi_{a}\left(\xi\right)\define\varphi'(a)\xi$
 | |
| \end_inset
 | |
| 
 | |
|  and
 | |
| \family default
 | |
| \series default
 | |
| \shape default
 | |
| \size default
 | |
| \emph default
 | |
| \bar default
 | |
| \strikeout default
 | |
| \uuline default
 | |
| \uwave default
 | |
| \noun default
 | |
| \color inherit
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \varphi\left(ae^{\xihat}\right)\approx\varphi\left(a\right)\exp\left(\widehat{\varphi'(a)\xi}\right)\label{eq:pushforward}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with equality for 
 | |
| \begin_inset Formula $\xi\rightarrow0$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  We call 
 | |
| \begin_inset Formula $\varphi'(a)$
 | |
| \end_inset
 | |
| 
 | |
|  the 
 | |
| \series bold
 | |
| Jacobian matrix
 | |
| \series default
 | |
|  of the map 
 | |
| \begin_inset Formula $\varphi$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Below we show that even with this informal definition we can deduce the
 | |
|  pushforward in a number of useful cases.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Left Multiplication with a Constant
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| Suppose 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
|  is an 
 | |
| \begin_inset Formula $n$
 | |
| \end_inset
 | |
| 
 | |
| -dimensional Lie group, and 
 | |
| \begin_inset Formula $\varphi:G\rightarrow G$
 | |
| \end_inset
 | |
| 
 | |
|  is defined as 
 | |
| \begin_inset Formula $\varphi(g)=hg$
 | |
| \end_inset
 | |
| 
 | |
| , with 
 | |
| \begin_inset Formula $h\in G$
 | |
| \end_inset
 | |
| 
 | |
|  a constant.
 | |
|  Then 
 | |
| \begin_inset Formula $D\varphi_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  is the identity mapping and 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \varphi'(a)=I_{n}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| Defining 
 | |
| \begin_inset Formula $y=D\varphi_{a}x$
 | |
| \end_inset
 | |
| 
 | |
|  as in 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:pushforward"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we have
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| \varphi(a)e^{\yhat} & = & \varphi(ae^{\xhat})\\
 | |
| hae^{\yhat} & = & hae^{\xhat}\\
 | |
| y & = & x
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Pushforward of the Inverse Mapping
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| A well known property of Lie groups is the the fact that applying an incremental
 | |
|  change 
 | |
| \begin_inset Formula $\xihat$
 | |
| \end_inset
 | |
| 
 | |
|  in a different frame 
 | |
| \begin_inset Formula $g$
 | |
| \end_inset
 | |
| 
 | |
|  can be applied in a single step by applying the change 
 | |
| \begin_inset Formula $Ad_{g}\xihat$
 | |
| \end_inset
 | |
| 
 | |
|  in the original frame, 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| ge^{\xihat}g^{-1}=\exp\left(Ad_{g}\xihat\right)\label{eq:Adjoint2}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $Ad_{g}:\mathfrak{g}\rightarrow\mathfrak{g}$
 | |
| \end_inset
 | |
| 
 | |
|  is the 
 | |
| \series bold
 | |
| adjoint representation
 | |
| \series default
 | |
| .
 | |
|  This comes in handy in the following:
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| Suppose that 
 | |
| \begin_inset Formula $\varphi:G\rightarrow G$
 | |
| \end_inset
 | |
| 
 | |
|  is defined as the mapping from an element 
 | |
| \begin_inset Formula $g$
 | |
| \end_inset
 | |
| 
 | |
|  to its 
 | |
| \series bold
 | |
| inverse
 | |
| \series default
 | |
|  
 | |
| \begin_inset Formula $g^{-1}$
 | |
| \end_inset
 | |
| 
 | |
| , i.e., 
 | |
| \begin_inset Formula $\varphi(g)=g^{-1}$
 | |
| \end_inset
 | |
| 
 | |
| , then the pushforward 
 | |
| \begin_inset Formula $D\varphi_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  satisfies
 | |
| \begin_inset Formula 
 | |
| \begin{align}
 | |
| \left(D\varphi_{a}x\right)\hat{} & =-Ad_{a}\xhat\label{eq:Dinverse}
 | |
| \end{align}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset ERT
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| 
 | |
| 
 | |
| \backslash
 | |
| noindent
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  In other words, and this is intuitive in hindsight, approximating the inverse
 | |
|  is accomplished by negation of 
 | |
| \begin_inset Formula $\xihat$
 | |
| \end_inset
 | |
| 
 | |
| , along with an adjoint to make sure it is applied in the right frame.
 | |
|  
 | |
| \begin_inset ERT
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| 
 | |
| 
 | |
| \backslash
 | |
| noindent
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  Note, however, that 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:Dinverse"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  does not immediately yield a useful expression for the Jacobian matrix
 | |
|  
 | |
| \begin_inset Formula $\varphi'(a)$
 | |
| \end_inset
 | |
| 
 | |
| , but in many important cases this will turn out to be easy.
 | |
|  
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| Defining 
 | |
| \begin_inset Formula $y=D\varphi_{a}x$
 | |
| \end_inset
 | |
| 
 | |
|  as in 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:pushforward"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we have
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| \varphi(a)e^{\yhat} & = & \varphi(ae^{\xhat})\\
 | |
| a^{-1}e^{\yhat} & = & \left(ae^{\xhat}\right)^{-1}\\
 | |
| e^{\yhat} & = & -ae^{\xhat}a^{-1}\\
 | |
| \yhat & = & -\Ad a\xhat
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| For 3D rotations 
 | |
| \begin_inset Formula $R\in\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  we have
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| Ad_{g}(\hat{\omega})=R\hat{\omega}R^{T}=\Skew{R\omega}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and hence the pushforward for the inverse mapping 
 | |
| \begin_inset Formula $\varphi(R)=R^{T}$
 | |
| \end_inset
 | |
| 
 | |
|  has the matrix 
 | |
| \begin_inset Formula $\varphi'(R)=-R$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Right Multiplication with a Constant
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| Suppose 
 | |
| \begin_inset Formula $\varphi:G\rightarrow G$
 | |
| \end_inset
 | |
| 
 | |
|  is defined as 
 | |
| \begin_inset Formula $\varphi(g)=gh$
 | |
| \end_inset
 | |
| 
 | |
| , with 
 | |
| \begin_inset Formula $h\in G$
 | |
| \end_inset
 | |
| 
 | |
|  a constant.
 | |
|  Then 
 | |
| \begin_inset Formula $D\varphi_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  satisfies
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \left(D\varphi_{a}x\right)\hat{}=\Ad{h^{-1}}\xhat
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| Defining 
 | |
| \begin_inset Formula $y=D\varphi_{a}x$
 | |
| \end_inset
 | |
| 
 | |
|  as in 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:pushforward"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we have
 | |
| \begin_inset Formula 
 | |
| \begin{align*}
 | |
| \varphi(a)e^{\yhat} & =\varphi(ae^{\xhat})\\
 | |
| ahe & =ae^{\xhat}h\\
 | |
| e^{\yhat} & =h^{-1}e^{\xhat}h=\exp\left(\Ad{h^{-1}}\xhat\right)\\
 | |
| \yhat & =\Ad{h^{-1}}\xhat
 | |
| \end{align*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| In the case of 3D rotations, right multiplication with a constant rotation
 | |
|  
 | |
| \begin_inset Formula $R$
 | |
| \end_inset
 | |
| 
 | |
|  is done through the mapping 
 | |
| \begin_inset Formula $\varphi(A)=AR$
 | |
| \end_inset
 | |
| 
 | |
| , and satisfies
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Skew{D\varphi_{A}x}=\Ad{R^{T}}\Skew x
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| For 3D rotations 
 | |
| \begin_inset Formula $R\in\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  we have
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| Ad_{R^{T}}(\hat{\omega})=R^{T}\hat{\omega}R=\Skew{R^{T}\omega}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and hence the Jacobian matrix of 
 | |
| \begin_inset Formula $\varphi$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $A$
 | |
| \end_inset
 | |
| 
 | |
|  is 
 | |
| \begin_inset Formula $\varphi'(A)=R^{T}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Pushforward of Compose
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| If we define the mapping 
 | |
| \begin_inset Formula $\varphi:G\times G\rightarrow G$
 | |
| \end_inset
 | |
| 
 | |
|  as the product of two group elements 
 | |
| \begin_inset Formula $g,h\in G$
 | |
| \end_inset
 | |
| 
 | |
| , i.e., 
 | |
| \begin_inset Formula $\varphi(g,h)=gh$
 | |
| \end_inset
 | |
| 
 | |
| , then the pushforward will satisfy
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| D\varphi_{(a,b)}(x,y)=D_{1}\varphi_{(a,b)}x+D_{2}\varphi_{(a,b)}y
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \left(D_{1}\varphi_{(a,b)}x\right)\hat{}=\Ad{b^{-1}}\xhat\mbox{\;\ and\;}D_{2}\varphi_{(a,b)}y=y
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| Looking at the first argument, the proof is very similar to right multiplication
 | |
|  with a constant 
 | |
| \begin_inset Formula $b$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Indeed, defining 
 | |
| \begin_inset Formula $y=D\varphi_{a}x$
 | |
| \end_inset
 | |
| 
 | |
|  as in 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:pushforward"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we have
 | |
| \begin_inset Formula 
 | |
| \begin{align}
 | |
| \varphi(a,b)e^{\yhat} & =\varphi(ae^{\xhat},b)\nonumber \\
 | |
| abe^{\yhat} & =ae^{\xhat}b\nonumber \\
 | |
| e^{\yhat} & =b^{-1}e^{\xhat}b=\exp\left(\Ad{b^{-1}}\xhat\right)\nonumber \\
 | |
| \yhat & =\Ad{b^{-1}}\xhat\label{eq:Dcompose1}
 | |
| \end{align}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| In other words, to apply an incremental change 
 | |
| \begin_inset Formula $\xhat$
 | |
| \end_inset
 | |
| 
 | |
|  to 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  we first need to undo 
 | |
| \begin_inset Formula $b$
 | |
| \end_inset
 | |
| 
 | |
| , then apply 
 | |
| \begin_inset Formula $\xhat$
 | |
| \end_inset
 | |
| 
 | |
| , and then apply 
 | |
| \begin_inset Formula $b$
 | |
| \end_inset
 | |
| 
 | |
|  again.
 | |
|  Using 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:Adjoint2"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  this can be done in one step by simply applying 
 | |
| \begin_inset Formula $\Ad{b^{-1}}\xhat$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| The second argument is quite a bit easier and simply yields the identity
 | |
|  mapping:
 | |
| \begin_inset Formula 
 | |
| \begin{align}
 | |
| \varphi(a,b)e^{\yhat} & =\varphi(a,be^{\xhat})\nonumber \\
 | |
| abe^{\yhat} & =abe^{\xhat}\nonumber \\
 | |
| y & =x\label{eq:Dcompose2}
 | |
| \end{align}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Note Note
 | |
| status open
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| In summary, the Jacobian matrix of 
 | |
| \begin_inset Formula $\varphi(g,h)=gh$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $(a,b)\in G\times G$
 | |
| \end_inset
 | |
| 
 | |
|  is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \varphi'(a,b)=?
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| For 3D rotations 
 | |
| \begin_inset Formula $A,B\in\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  we have 
 | |
| \begin_inset Formula $\varphi(A,B)=AB$
 | |
| \end_inset
 | |
| 
 | |
| , and 
 | |
| \begin_inset Formula $\Ad{B^{T}}\Skew{\omega}=\Skew{B^{T}\omega}$
 | |
| \end_inset
 | |
| 
 | |
| , hence the Jacobian matrix 
 | |
| \begin_inset Formula $\varphi'(A,B)$
 | |
| \end_inset
 | |
| 
 | |
|  of composing two rotations is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \varphi'(A,B)=\left[\begin{array}{cc}
 | |
| B^{T} & I_{3}\end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Pushforward of Between
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Finally, let us find the pushforward of 
 | |
| \series bold
 | |
| between
 | |
| \series default
 | |
| , defined as 
 | |
| \begin_inset Formula $\varphi(g,h)=g^{-1}h$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  For the first argument we reason as:
 | |
| \begin_inset Formula 
 | |
| \begin{align}
 | |
| \varphi(g,h)e^{\yhat} & =\varphi(ge^{\xhat},h)\nonumber \\
 | |
| g^{-1}he^{\yhat} & =\left(ge^{\xhat}\right)^{-1}h=-e^{\xhat}g^{-1}h\nonumber \\
 | |
| e^{\yhat} & =-\left(h^{-1}g\right)e^{\xhat}\left(h^{-1}g\right)^{-1}=-\exp\Ad{\left(h^{-1}g\right)}\xhat\nonumber \\
 | |
| \yhat & =-\Ad{\left(h^{-1}g\right)}\xhat=-\Ad{\varphi\left(h,g\right)}\xhat\label{eq:Dbetween1}
 | |
| \end{align}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The second argument yields the identity mapping.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| For 3D rotations 
 | |
| \begin_inset Formula $A,B\in\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  we have 
 | |
| \begin_inset Formula $\varphi(A,B)=A^{T}B$
 | |
| \end_inset
 | |
| 
 | |
| , and 
 | |
| \begin_inset Formula $\Ad{B^{T}A}\Skew{-\omega}=\Skew{-B^{T}A\omega}$
 | |
| \end_inset
 | |
| 
 | |
| , hence the Jacobian matrix 
 | |
| \begin_inset Formula $\varphi'(A,B)$
 | |
| \end_inset
 | |
| 
 | |
|  of between is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \varphi'(A,B)=\left[\begin{array}{cc}
 | |
| \left(-B^{T}A\right) & I_{3}\end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Numerical PushForward
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Let's examine
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f\left(g\right)e^{\yhat}=f\left(ge^{\xhat}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and multiply with 
 | |
| \begin_inset Formula $f(g)^{-1}$
 | |
| \end_inset
 | |
| 
 | |
|  on both sides:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| e^{\yhat}=f\left(g\right)^{-1}f\left(ge^{\xhat}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| We then take the log (which in our case returns 
 | |
| \begin_inset Formula $y$
 | |
| \end_inset
 | |
| 
 | |
| , not 
 | |
| \begin_inset Formula $\yhat$
 | |
| \end_inset
 | |
| 
 | |
| ):
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| y(x)=\log\left[f\left(g\right)^{-1}f\left(ge^{\xhat}\right)\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Let us look at 
 | |
| \begin_inset Formula $x=0$
 | |
| \end_inset
 | |
| 
 | |
| , and perturb in direction 
 | |
| \begin_inset Formula $i$
 | |
| \end_inset
 | |
| 
 | |
| , 
 | |
| \begin_inset Formula $e_{i}=[0,0,1,0,0]$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Then take derivative, 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{y(d)}d\define\lim_{d\rightarrow0}\frac{y(d)-y(0)}{d}=\lim_{d\rightarrow0}\frac{1}{d}\log\left[f\left(g\right)^{-1}f\left(ge^{\widehat{de_{i}}}\right)\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| which is the basis for a numerical derivative scheme.
 | |
| \begin_inset Note Note
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| Not understood yet: Let us also look at a chain rule.
 | |
|  If we know the behavior at the origin 
 | |
| \begin_inset Formula $I$
 | |
| \end_inset
 | |
| 
 | |
| , we can extrapolate
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f(ge^{\xhat})=f(ge^{\xhat}g^{-1}g)=f(e^{\Ad g\xhat}g)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Derivative of the Exponential and Logarithm Map
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Theorem
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "D-exp"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The derivative of the function 
 | |
| \begin_inset Formula $f:\Reals n\rightarrow G$
 | |
| \end_inset
 | |
| 
 | |
|  that applies the wedge operator followed by the exponential map, i.e., 
 | |
| \begin_inset Formula $f(\xi)=\exp\xihat$
 | |
| \end_inset
 | |
| 
 | |
| , is the identity map for 
 | |
| \begin_inset Formula $\xi=0$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Proof
 | |
| For 
 | |
| \begin_inset Formula $\xi=0$
 | |
| \end_inset
 | |
| 
 | |
| , we have
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| f(\xi)e^{\yhat} & = & f(\xi+x)\\
 | |
| f(0)e^{\yhat} & = & f(0+x)\\
 | |
| e^{\yhat} & = & e^{\xhat}
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Corollary
 | |
| The derivative of the inverse 
 | |
| \begin_inset Formula $f^{-1}$
 | |
| \end_inset
 | |
| 
 | |
|  is the identity as well, i.e., for 
 | |
| \begin_inset Formula $T=e$
 | |
| \end_inset
 | |
| 
 | |
| , the identity element in 
 | |
| \begin_inset Formula $G$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| For 
 | |
| \begin_inset Formula $\xi\neq0$
 | |
| \end_inset
 | |
| 
 | |
| , things are not simple, see .
 | |
|  
 | |
| \begin_inset Flex URL
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| 
 | |
| http://deltaepsilons.wordpress.com/2009/11/06/helgasons-formula-for-the-differenti
 | |
| al-of-the-exponential/
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Newpage pagebreak
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| General Manifolds
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Retractions
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset FormulaMacro
 | |
| \newcommand{\retract}{\mathcal{R}}
 | |
| {\mathcal{R}}
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| General manifolds that are not Lie groups do not have an exponential map,
 | |
|  but can still be handled by defining a 
 | |
| \series bold
 | |
| retraction
 | |
| \series default
 | |
|  
 | |
| \begin_inset Formula $\retract:\Man\times\Reals n\rightarrow\Man$
 | |
| \end_inset
 | |
| 
 | |
| , such that
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| a\oplus\xi\define\retract_{a}\left(\xi\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| A retraction 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| key "Absil07book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  is required to be tangent to geodesics on the manifold 
 | |
| \begin_inset Formula $\Man$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  We can define many retractions for a manifold 
 | |
| \begin_inset Formula $\Man$
 | |
| \end_inset
 | |
| 
 | |
| , even for those with more structure.
 | |
|  For the vector space 
 | |
| \begin_inset Formula $\Reals n$
 | |
| \end_inset
 | |
| 
 | |
|  the retraction is just vector addition, and for Lie groups the obvious
 | |
|  retraction is simply the exponential map, i.e., 
 | |
| \begin_inset Formula $\retract_{a}(\xi)=a\cdot\exp\xihat$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  However, one can choose other, possibly computationally attractive retractions,
 | |
|  as long as around a they agree with the geodesic induced by the exponential
 | |
|  map, i.e.,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \lim_{\xi\rightarrow0}\frac{\left|a\cdot\exp\xihat-\retract_{a}\left(\xi\right)\right|}{\left|\xi\right|}=0
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| For 
 | |
| \begin_inset Formula $\SEthree$
 | |
| \end_inset
 | |
| 
 | |
| , instead of using the true exponential map it is computationally more efficient
 | |
|  to define the retraction, which uses a first order approximation of the
 | |
|  translation update
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \retract_{T}\left(\left[\begin{array}{c}
 | |
| \omega\\
 | |
| v
 | |
| \end{array}\right]\right)=\left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| e^{\Skew{\omega}} & v\\
 | |
| 0 & 1
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| Re^{\Skew{\omega}} & t+Rv\\
 | |
| 0 & 1
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Derivatives
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Equipped with a retraction, then, we can generalize the notion of a derivative
 | |
|  for functions 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  from general a manifold 
 | |
| \begin_inset Formula $\Man$
 | |
| \end_inset
 | |
| 
 | |
|  to 
 | |
| \begin_inset Formula $\Reals m$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Definition
 | |
| We define a function 
 | |
| \begin_inset Formula $f:\Man\rightarrow\Reals m$
 | |
| \end_inset
 | |
| 
 | |
|  to be 
 | |
| \series bold
 | |
| differentiable
 | |
| \series default
 | |
|  at 
 | |
| \begin_inset Formula $a\in\Man$
 | |
| \end_inset
 | |
| 
 | |
|  if there exists a matrix 
 | |
| \begin_inset Formula $f'(a)$
 | |
| \end_inset
 | |
| 
 | |
|  such that
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \lim_{\xi\rightarrow0}\frac{\left|f(a)+f'(a)\xi-f\left(\retract_{a}(\xi)\right)\right|}{\left|\xi\right|}=0
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with 
 | |
| \begin_inset Formula $\xi\in\Reals n$
 | |
| \end_inset
 | |
| 
 | |
|  for an 
 | |
| \begin_inset Formula $n$
 | |
| \end_inset
 | |
| 
 | |
| -dimensional manifold, and 
 | |
| \begin_inset Formula $\retract_{a}:\Reals n\rightarrow\Man$
 | |
| \end_inset
 | |
| 
 | |
|  a retraction 
 | |
| \begin_inset Formula $\retract$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  If 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  is differentiable, then 
 | |
| \begin_inset Formula $f'(a)$
 | |
| \end_inset
 | |
| 
 | |
|  is called the 
 | |
| \series bold
 | |
| Jacobian matrix
 | |
| \series default
 | |
|  of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| , and the linear transformation 
 | |
| \begin_inset Formula $Df_{a}:\xi\mapsto f'(a)\xi$
 | |
| \end_inset
 | |
| 
 | |
|  is called the 
 | |
| \series bold
 | |
| derivative
 | |
| \series default
 | |
|  of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Definition
 | |
| For manifolds that are also Lie groups, the derivative of any function 
 | |
| \begin_inset Formula $f:G\rightarrow\Reals m$
 | |
| \end_inset
 | |
| 
 | |
|  will agree no matter what retraction 
 | |
| \begin_inset Formula $\retract$
 | |
| \end_inset
 | |
| 
 | |
|  is used.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Newpage pagebreak
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Part
 | |
| Practice
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Below we apply the results derived in the theory part to the geometric objects
 | |
|  we use in GTSAM.
 | |
|  Above we preferred the modern notation 
 | |
| \begin_inset Formula $D_{1}f$
 | |
| \end_inset
 | |
| 
 | |
|  for the partial derivative.
 | |
|  Below (because this was written earlier) we use the more classical notation
 | |
|  
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{f(x,y)}x
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| In addition, for Lie groups we will abuse the notation and take
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \at{\deriv{\varphi(g)}{\xi}}a
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| to be the Jacobian matrix 
 | |
| \begin_inset Formula $\varphi'($
 | |
| \end_inset
 | |
| 
 | |
| a) of the mapping 
 | |
| \begin_inset Formula $\varphi$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $a\in G$
 | |
| \end_inset
 | |
| 
 | |
| , associated with the pushforward 
 | |
| \begin_inset Formula $D\varphi_{a}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| SLAM Example
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Let us examine a visual SLAM example.
 | |
|  We have 2D measurements 
 | |
| \begin_inset Formula $z_{ij}$
 | |
| \end_inset
 | |
| 
 | |
| , where each measurement is predicted by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| z_{ij}=h(T_{i},p_{j})=\pi(T_{i}^{-1}p_{j})
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $T_{i}$
 | |
| \end_inset
 | |
| 
 | |
|  is the 3D pose of the 
 | |
| \begin_inset Formula $i^{th}$
 | |
| \end_inset
 | |
| 
 | |
|  camera, 
 | |
| \begin_inset Formula $p_{j}$
 | |
| \end_inset
 | |
| 
 | |
|  is the location of the 
 | |
| \begin_inset Formula $j^{th}$
 | |
| \end_inset
 | |
| 
 | |
|  point, and 
 | |
| \begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
 | |
| \end_inset
 | |
| 
 | |
|  is the camera projection function from Example 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "ex:projection"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| BetweenFactor
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| BetweenFactor is often used to summarize 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Theorem 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "D-exp"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  about the derivative of the exponential map 
 | |
| \begin_inset Formula $f:\xi\mapsto\exp\xihat$
 | |
| \end_inset
 | |
| 
 | |
|  being identity only at 
 | |
| \begin_inset Formula $\xi=0$
 | |
| \end_inset
 | |
| 
 | |
|  has implications for GTSAM.
 | |
|  Given two elements 
 | |
| \begin_inset Formula $T_{1}$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $T_{2}$
 | |
| \end_inset
 | |
| 
 | |
| , BetweenFactor evaluates
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| g(T_{1},T_{2};Z)=f^{-1}\left(\mathop{between}(Z,\mathop{between}(T_{1},T_{2})\right)=f^{-1}\left(Z^{-1}\left(T_{1}^{-1}T_{2}\right)\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| but because it is assumed that 
 | |
| \begin_inset Formula $Z\approx T_{1}^{-1}T_{2}$
 | |
| \end_inset
 | |
| 
 | |
| , and hence we have 
 | |
| \begin_inset Formula $Z^{-1}T_{1}^{-1}T_{2}\approx e$
 | |
| \end_inset
 | |
| 
 | |
|  and the derivative should be good there.
 | |
|  Note that the derivative of 
 | |
| \emph on
 | |
| between
 | |
| \emph default
 | |
|  is identity in its second argument.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Point3
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| A cross product 
 | |
| \begin_inset Formula $a\times b$
 | |
| \end_inset
 | |
| 
 | |
|  can be written as a matrix multiplication
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| a\times b=\Skew ab
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $\Skew a$
 | |
| \end_inset
 | |
| 
 | |
|  is a skew-symmetric matrix defined as
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Skew{x,y,z}=\left[\begin{array}{ccc}
 | |
| 0 & -z & y\\
 | |
| z & 0 & -x\\
 | |
| -y & x & 0
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| We also have
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| a^{T}\Skew b=-(\Skew ba)^{T}=-(a\times b)^{T}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The derivative of a cross product 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \frac{\partial(a\times b)}{\partial a}=\Skew{-b}\label{eq:Dcross1}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \frac{\partial(a\times b)}{\partial b}=\Skew a\label{eq:Dcross2}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Newpage pagebreak
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| 2D Rotations
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Rot2 in GTSAM
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| A rotation is stored as 
 | |
| \begin_inset Formula $(\cos\theta,\sin\theta)$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  An incremental rotation is applied using the trigonometric sum rule:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \cos\theta'=\cos\theta\cos\delta-\sin\theta\sin\delta
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \sin\theta'=\sin\theta\cos\delta+\cos\theta\sin\delta
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $\delta$
 | |
| \end_inset
 | |
| 
 | |
|  is an incremental rotation angle.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Derivatives of Actions
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| In the case of 
 | |
| \begin_inset Formula $\SOtwo$
 | |
| \end_inset
 | |
| 
 | |
|  the vector space is 
 | |
| \begin_inset Formula $\Rtwo$
 | |
| \end_inset
 | |
| 
 | |
| , and the group action 
 | |
| \begin_inset Formula $f(R,p)$
 | |
| \end_inset
 | |
| 
 | |
|  corresponds to rotating the 2D point 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f(R,p)=Rp
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| According to Theorem 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "th:Action"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , the Jacobian matrix of 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  is given by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f'(R,p)=\left[\begin{array}{cc}
 | |
| RH(p) & R\end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| with 
 | |
| \begin_inset Formula $H:\Reals 2\rightarrow\Reals{2\times2}$
 | |
| \end_inset
 | |
| 
 | |
|  a linear mapping that depends on 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  In the case of 
 | |
| \begin_inset Formula $\SOtwo$
 | |
| \end_inset
 | |
| 
 | |
| , we can find 
 | |
| \begin_inset Formula $H(p)$
 | |
| \end_inset
 | |
| 
 | |
|  by equating (as in Equation 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "eq:Hp"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| ):
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \skew wp=\left[\begin{array}{cc}
 | |
| 0 & -\omega\\
 | |
| \omega & 0
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| x\\
 | |
| y
 | |
| \end{array}\right]=\left[\begin{array}{c}
 | |
| -y\\
 | |
| x
 | |
| \end{array}\right]\omega=H(p)\omega
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Note that 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \strikeout off
 | |
| \uuline off
 | |
| \uwave off
 | |
| \noun off
 | |
| \color none
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| H(p)=\left[\begin{array}{c}
 | |
| -y\\
 | |
| x
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| 0 & -1\\
 | |
| 1 & 0
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| x\\
 | |
| y
 | |
| \end{array}\right]=R_{\pi/2}p
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and since 2D rotations commute, we also have, with 
 | |
| \begin_inset Formula $q=Rp$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \family default
 | |
| \series default
 | |
| \shape default
 | |
| \size default
 | |
| \emph default
 | |
| \bar default
 | |
| \strikeout default
 | |
| \uuline default
 | |
| \uwave default
 | |
| \noun default
 | |
| \color inherit
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f'(R,p)=\left[\begin{array}{cc}
 | |
| R\left(R_{\pi/2}p\right) & R\end{array}\right]=\left[\begin{array}{cc}
 | |
| R_{\pi/2}q & R\end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Pushforwards of Mappings
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Since 
 | |
| \begin_inset Formula $\Ad R\skew{\omega}=\skew{\omega}$
 | |
| \end_inset
 | |
| 
 | |
| , we have the derivative of 
 | |
| \series bold
 | |
| inverse
 | |
| \series default
 | |
| ,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial R^{T}}{\partial\omega}=-\Ad R=-1\mbox{ }
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \series bold
 | |
| compose,
 | |
| \series default
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=\Ad{R_{2}^{T}}=1\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=1
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and 
 | |
| \series bold
 | |
| between:
 | |
| \series default
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{1}}=-\Ad{R_{2}^{T}R_{1}}=-1\mbox{ and }\frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{2}}=1
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Newpage pagebreak
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| 2D Rigid Transformations
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| The derivatives of Actions
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The action of 
 | |
| \begin_inset Formula $\SEtwo$
 | |
| \end_inset
 | |
| 
 | |
|  on 2D points is done by embedding the points in 
 | |
| \begin_inset Formula $\mathbb{R}^{3}$
 | |
| \end_inset
 | |
| 
 | |
|  by using homogeneous coordinates
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| f(T,p)=\hat{q}=\left[\begin{array}{c}
 | |
| q\\
 | |
| 1
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| p\\
 | |
| 1
 | |
| \end{array}\right]=T\hat{p}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| To find the derivative, we write the quantity 
 | |
| \begin_inset Formula $\xihat\hat{p}$
 | |
| \end_inset
 | |
| 
 | |
|  as the product of the 
 | |
| \begin_inset Formula $3\times3$
 | |
| \end_inset
 | |
| 
 | |
|  matrix 
 | |
| \begin_inset Formula $H(p)$
 | |
| \end_inset
 | |
| 
 | |
|  with 
 | |
| \begin_inset Formula $\xi$
 | |
| \end_inset
 | |
| 
 | |
| : 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \xihat\hat{p}=\left[\begin{array}{cc}
 | |
| \skew{\omega} & v\\
 | |
| 0 & 0
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| p\\
 | |
| 1
 | |
| \end{array}\right]=\left[\begin{array}{c}
 | |
| \skew{\omega}p+v\\
 | |
| 0
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| I_{2} & R_{\pi/2}p\\
 | |
| 0 & 0
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| v\\
 | |
| \omega
 | |
| \end{array}\right]=H(p)\xi\label{eq:HpSE2}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Hence, by Theorem 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "th:Action"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  we have
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \deriv{\left(T\hat{p}\right)}{\xi}=TH(p)=\left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| I_{2} & R_{\pi/2}p\\
 | |
| 0 & 0
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| R & RR_{\pi/2}p\\
 | |
| 0 & 0
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| R & R_{\pi/2}q\\
 | |
| 0 & 0
 | |
| \end{array}\right]\label{eq:SE2Action}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Note that, looking only at the top rows of 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:HpSE2"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:SE2Action"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we can recognize the quantity 
 | |
| \begin_inset Formula $\skew{\omega}p+v=v+\omega\left(R_{\pi/2}p\right)$
 | |
| \end_inset
 | |
| 
 | |
|  as the velocity of 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
|  in 
 | |
| \begin_inset Formula $\Rtwo$
 | |
| \end_inset
 | |
| 
 | |
| , and 
 | |
| \begin_inset Formula $\left[\begin{array}{cc}
 | |
| R & R_{\pi/2}q\end{array}\right]$
 | |
| \end_inset
 | |
| 
 | |
|  is the derivative of the action on 
 | |
| \begin_inset Formula $\Rtwo$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The derivative of the inverse action 
 | |
| \begin_inset Formula $g(T,p)=T^{-1}\hat{p}$
 | |
| \end_inset
 | |
| 
 | |
|  is given by Theorem 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "Th:InverseAction"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  specialized to 
 | |
| \begin_inset Formula $\SEtwo$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-H(T^{-1}p)=\left[\begin{array}{cc}
 | |
| -I_{2} & -R_{\pi/2}\left(T^{-1}p\right)\\
 | |
| 0 & 0
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Pushforwards of Mappings
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| We can just define all derivatives in terms of the adjoint map, which in
 | |
|  the case of 
 | |
| \begin_inset Formula $\SEtwo$
 | |
| \end_inset
 | |
| 
 | |
| , in twist coordinates, is the linear mapping
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Ad T\xi=\left[\begin{array}{cc}
 | |
| R & -R_{\pi/2}t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| v\\
 | |
| \omega
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and we have 
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| \frac{\partial T^{^{-1}}}{\partial\xi} & = & -\Ad T
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| \frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}} & = & \Ad{T_{2}^{^{-1}}}\mbox{ and }\frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{3}
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| \frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{1}} & = & -\Ad{T_{2}^{^{-1}}T_{1}}=-\Ad{between(T_{2},T_{1})}\mbox{ and }\frac{\partial\left(T_{1}^{-1}T_{2}\right)}{\partial\xi_{2}}=I_{3}
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Newpage pagebreak
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| 3D Rotations
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Derivatives of Actions
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| In the case of 
 | |
| \begin_inset Formula $\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  the vector space is  
 | |
| \begin_inset Formula $\Rthree$
 | |
| \end_inset
 | |
| 
 | |
| , and the group action 
 | |
| \begin_inset Formula $f(R,p)$
 | |
| \end_inset
 | |
| 
 | |
|  corresponds to rotating a point
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| q=f(R,p)=Rp
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| To calculate 
 | |
| \begin_inset Formula $H(p)$
 | |
| \end_inset
 | |
| 
 | |
|  for use in Theorem 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "th:Action"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  we make use of 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| so 
 | |
| \begin_inset Formula $H(p)\define\Skew{-p}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Hence, the final derivative of an action in its first argument is
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{\left(Rp\right)}{\omega}=RH(p)=-R\Skew p
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Likewise, according to Theorem 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "Th:InverseAction"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , the derivative of the inverse action is given by
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{\left(R^{T}p\right)}{\omega}=-H(R^{T}p)=\Skew{R^{T}p}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| \begin_inset CommandInset label
 | |
| LatexCommand label
 | |
| name "sub:3DAngularVelocities"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Instantaneous Velocity
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| For 3D rotations 
 | |
| \begin_inset Formula $R_{b}^{n}$
 | |
| \end_inset
 | |
| 
 | |
|  from a body frame 
 | |
| \begin_inset Formula $b$
 | |
| \end_inset
 | |
| 
 | |
|  to a navigation frame 
 | |
| \begin_inset Formula $n$
 | |
| \end_inset
 | |
| 
 | |
|  we have the spatial angular velocity 
 | |
| \begin_inset Formula $\omega_{nb}^{n}$
 | |
| \end_inset
 | |
| 
 | |
|  measured in the navigation frame,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Skew{\omega_{nb}^{n}}\define\dot{R}_{b}^{n}\left(R_{b}^{n}\right)^{T}=\dot{R}_{b}^{n}R_{n}^{b}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and the body angular velocity 
 | |
| \begin_inset Formula $\omega_{nb}^{b}$
 | |
| \end_inset
 | |
| 
 | |
|  measured in the body frame:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Skew{\omega_{nb}^{b}}\define\left(R_{b}^{n}\right)^{T}\dot{R}_{b}^{n}=R_{n}^{b}\dot{R}_{b}^{n}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| These quantities can be used to derive the velocity of a point 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| , and we choose between spatial or body angular velocity depending on the
 | |
|  frame in which we choose to represent 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| v^{n}=\Skew{\omega_{nb}^{n}}p^{n}=\omega_{nb}^{n}\times p^{n}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| v^{b}=\Skew{\omega_{nb}^{b}}p^{b}=\omega_{nb}^{b}\times p^{b}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| We can transform these skew-symmetric matrices from navigation to body frame
 | |
|  by conjugating, 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Skew{\omega_{nb}^{b}}=R_{n}^{b}\Skew{\omega_{nb}^{n}}R_{b}^{n}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| but because the adjoint representation satisfies
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| Ad_{R}\Skew{\omega}\define R\Skew{\omega}R^{T}=\Skew{R\omega}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| we can even more easily transform between spatial and body angular velocities
 | |
|  as 3-vectors:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \omega_{nb}^{b}=R_{n}^{b}\omega_{nb}^{n}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Pushforwards of Mappings
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| For 
 | |
| \begin_inset Formula $\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  we have 
 | |
| \begin_inset Formula $\Ad R\Skew{\omega}=\Skew{R\omega}$
 | |
| \end_inset
 | |
| 
 | |
|  and, in terms of angular velocities: 
 | |
| \begin_inset Formula $\Ad R\omega=R\omega$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  Hence, the Jacobian matrix of the 
 | |
| \series bold
 | |
| inverse
 | |
| \series default
 | |
|  mapping is (see Equation 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "eq:Dinverse"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| ) 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial R^{T}}{\partial\omega}=-\Ad R=-R
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| for 
 | |
| \series bold
 | |
| compose
 | |
| \series default
 | |
|  we have (Equations 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "eq:Dcompose1"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "eq:Dcompose2"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| ): 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{1}}=R_{2}^{T}\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and 
 | |
| \series bold
 | |
| between
 | |
| \series default
 | |
|  (Equation 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "eq:Dbetween1"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| ):
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial\left(R_{1}^{T}R_{2}\right)}{\partial\omega_{1}}=-R_{2}^{T}R_{1}=-between(R_{2},R_{1})\mbox{ and }\frac{\partial\left(R_{1}R_{2}\right)}{\partial\omega_{2}}=I_{3}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Retractions
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Absil 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| after "page 58"
 | |
| key "Absil07book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  discusses two possible retractions for 
 | |
| \begin_inset Formula $\SOthree$
 | |
| \end_inset
 | |
| 
 | |
|  based on the QR decomposition or the polar decomposition of the matrix
 | |
|  
 | |
| \begin_inset Formula $R\Skew{\omega}$
 | |
| \end_inset
 | |
| 
 | |
| , but they are expensive.
 | |
|  Another retraction is based on the Cayley transform 
 | |
| \begin_inset Formula $\mathcal{C}:\sothree\rightarrow\SOthree$
 | |
| \end_inset
 | |
| 
 | |
| , a mapping from the skew-symmetric matrices to rotation matrices:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| Q=\mathcal{C}(\Omega)=(I-\Omega)(I+\Omega)^{-1}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Interestingly, the inverse Cayley transform 
 | |
| \begin_inset Formula $\mathcal{C}^{-1}:\SOthree\rightarrow\sothree$
 | |
| \end_inset
 | |
| 
 | |
|  has the same form:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Omega=\mathcal{C}^{-1}(Q)=(I-Q)(I+Q)^{-1}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The retraction needs a factor 
 | |
| \begin_inset Formula $-\frac{1}{2}$
 | |
| \end_inset
 | |
| 
 | |
|  however, to make it locally align with a geodesic: 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| R'=\retract_{R}(\omega)=R\mathcal{C}(-\frac{1}{2}\Skew{\omega})
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Note that given 
 | |
| \begin_inset Formula $\omega=(x,y,z)$
 | |
| \end_inset
 | |
| 
 | |
|  this has the closed-form expression below
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{1}{4+x^{2}+y^{2}+z^{2}}\left[\begin{array}{ccc}
 | |
| 4+x^{2}-y^{2}-z^{2} & 2xy-4z & 2xz+4y\\
 | |
| 2xy+4z & 4-x^{2}+y^{2}-z^{2} & 2yz-4x\\
 | |
| 2xz-4y & 2yz+4x & 4-x^{2}-y^{2}+z^{2}
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| =\frac{1}{4+x^{2}+y^{2}+z^{2}}\left\{ 4(I+\Skew{\omega})+\left[\begin{array}{ccc}
 | |
| x^{2}-y^{2}-z^{2} & 2xy & 2xz\\
 | |
| 2xy & -x^{2}+y^{2}-z^{2} & 2yz\\
 | |
| 2xz & 2yz & -x^{2}-y^{2}+z^{2}
 | |
| \end{array}\right]\right\} 
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| so it can be seen to be a second-order correction on 
 | |
| \begin_inset Formula $(I+\Skew{\omega})$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  The corresponding approximation to the logarithmic map is:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Skew{\omega}=\retract_{R}^{-1}(R')=-2\mathcal{C}^{-1}\left(R^{T}R'\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| 3D Rigid Transformations
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| The derivatives of Actions
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The action of 
 | |
| \begin_inset Formula $\SEthree$
 | |
| \end_inset
 | |
| 
 | |
|  on 3D points is done by embedding the points in 
 | |
| \begin_inset Formula $\mathbb{R}^{4}$
 | |
| \end_inset
 | |
| 
 | |
|  by using homogeneous coordinates
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \hat{q}=\left[\begin{array}{c}
 | |
| q\\
 | |
| 1
 | |
| \end{array}\right]=f(T,p)=\left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| p\\
 | |
| 1
 | |
| \end{array}\right]=T\hat{p}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The quantity 
 | |
| \begin_inset Formula $\xihat\hat{p}$
 | |
| \end_inset
 | |
| 
 | |
|  corresponds to a velocity in 
 | |
| \begin_inset Formula $\mathbb{R}^{4}$
 | |
| \end_inset
 | |
| 
 | |
|  (in the local 
 | |
| \begin_inset Formula $T$
 | |
| \end_inset
 | |
| 
 | |
|  frame), and equating it to 
 | |
| \begin_inset Formula $H(p)\xi$
 | |
| \end_inset
 | |
| 
 | |
|  as in Equation 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "eq:Hp"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  yields the 
 | |
| \begin_inset Formula $4\times6$
 | |
| \end_inset
 | |
| 
 | |
|  matrix 
 | |
| \begin_inset Formula $H(p)$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Foot
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| \begin_inset Formula $H(p)$
 | |
| \end_inset
 | |
| 
 | |
|  can also be obtained by taking the 
 | |
| \begin_inset Formula $j^{th}$
 | |
| \end_inset
 | |
| 
 | |
|  column of each of the 6 generators to multiply with components of 
 | |
| \begin_inset Formula $\hat{p}$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| : 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \xihat\hat{p}=\left[\begin{array}{cc}
 | |
| \Skew{\omega} & v\\
 | |
| 0 & 0
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| p\\
 | |
| 1
 | |
| \end{array}\right]=\left[\begin{array}{c}
 | |
| \omega\times p+v\\
 | |
| 0
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| \Skew{-p} & I_{3}\\
 | |
| 0 & 0
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| \omega\\
 | |
| v
 | |
| \end{array}\right]=H(p)\xi
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Note how velocities are analogous to points at infinity in projective geometry:
 | |
|  they correspond to free vectors indicating a direction and magnitude of
 | |
|  change.
 | |
|  According to Theorem 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "th:Action"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , the derivative of the group action is then 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{\left(T\hat{p}\right)}{\xi}=TH(p)=\left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| \Skew{-p} & I_{3}\\
 | |
| 0 & 0
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| R\Skew{-p} & R\\
 | |
| 0 & 0
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{\left(T\hat{p}\right)}{\hat{p}}=\left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| in homogenous coordinates.
 | |
|  In 
 | |
| \begin_inset Formula $\Rthree$
 | |
| \end_inset
 | |
| 
 | |
|  this becomes 
 | |
| \begin_inset Formula $R\left[\begin{array}{cc}
 | |
| -\Skew p & I_{3}\end{array}\right]$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The derivative of the inverse action 
 | |
| \begin_inset Formula $T^{-1}p$
 | |
| \end_inset
 | |
| 
 | |
|  is given by Theorem 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "Th:InverseAction"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| 
 | |
| \family roman
 | |
| \series medium
 | |
| \shape up
 | |
| \size normal
 | |
| \emph off
 | |
| \bar no
 | |
| \noun off
 | |
| \color none
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{\left(T^{-1}\hat{p}\right)}{\xi}=-H\left(T^{-1}\hat{p}\right)=\left[\begin{array}{cc}
 | |
| \Skew{T^{-1}\hat{p}} & -I_{3}\end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{\left(T^{-1}\hat{p}\right)}{\hat{p}}=\left[\begin{array}{cc}
 | |
| R^{T} & -R^{T}t\\
 | |
| 0 & 1
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Example
 | |
| Let us examine a visual SLAM example.
 | |
|  We have 2D measurements 
 | |
| \begin_inset Formula $z_{ij}$
 | |
| \end_inset
 | |
| 
 | |
| , where each measurement is predicted by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| z_{ij}=h(T_{i},p_{j})=\pi(T_{i}^{-1}p_{j})=\pi(q)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $T_{i}$
 | |
| \end_inset
 | |
| 
 | |
|  is the 3D pose of the 
 | |
| \begin_inset Formula $i^{th}$
 | |
| \end_inset
 | |
| 
 | |
|  camera, 
 | |
| \begin_inset Formula $p_{j}$
 | |
| \end_inset
 | |
| 
 | |
|  is the location of the 
 | |
| \begin_inset Formula $j^{th}$
 | |
| \end_inset
 | |
| 
 | |
|  point, 
 | |
| \begin_inset Formula $q=(x',y',z')=T^{-1}p$
 | |
| \end_inset
 | |
| 
 | |
|  is the point in camera coordinates, and 
 | |
| \begin_inset Formula $\pi:(x,y,z)\mapsto(x/z,y/z)$
 | |
| \end_inset
 | |
| 
 | |
|  is the camera projection function from Example 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand ref
 | |
| reference "ex:projection"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  By the chain rule, we then have
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{h(T,p)}{\xi}=\deriv{\pi(q)}q\deriv{(T^{-1}p)}{\xi}=\frac{1}{z'}\left[\begin{array}{ccc}
 | |
| 1 & 0 & -x'/z'\\
 | |
| 0 & 1 & -y'/z'
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| \Skew q & -I_{3}\end{array}\right]=\left[\begin{array}{cc}
 | |
| \pi'(q)\Skew q & -\pi'(q)\end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \deriv{h(T,p)}p=\pi'(q)R^{T}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Instantaneous Velocity
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| For rigid 3D transformations 
 | |
| \begin_inset Formula $T_{b}^{n}$
 | |
| \end_inset
 | |
| 
 | |
|  from a body frame 
 | |
| \begin_inset Formula $b$
 | |
| \end_inset
 | |
| 
 | |
|  to a navigation frame 
 | |
| \begin_inset Formula $n$
 | |
| \end_inset
 | |
| 
 | |
|  we have the instantaneous spatial twist 
 | |
| \begin_inset Formula $\xi_{nb}^{n}$
 | |
| \end_inset
 | |
| 
 | |
|  measured in the navigation frame,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \hat{\xi}_{nb}^{n}\define\dot{T}_{b}^{n}\left(T_{b}^{n}\right)^{-1}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and the instantaneous body twist 
 | |
| \begin_inset Formula $\xi_{nb}^{b}$
 | |
| \end_inset
 | |
| 
 | |
|  measured in the body frame:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \hat{\xi}_{nb}^{b}\define\left(T_{b}^{n}\right)^{T}\dot{T}_{b}^{n}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Pushforwards of Mappings
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| As we can express the Adjoint representation in terms of twist coordinates,
 | |
|  we have
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \left[\begin{array}{c}
 | |
| \omega'\\
 | |
| v'
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| R & 0\\
 | |
| \Skew tR & R
 | |
| \end{array}\right]\left[\begin{array}{c}
 | |
| \omega\\
 | |
| v
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Hence, as with 
 | |
| \begin_inset Formula $\SOthree$
 | |
| \end_inset
 | |
| 
 | |
| , we are now in a position to simply posit the derivative of 
 | |
| \series bold
 | |
| inverse
 | |
| \series default
 | |
| ,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial T^{-1}}{\partial\xi}=\Ad T=-\left[\begin{array}{cc}
 | |
| R & 0\\
 | |
| \Skew tR & R
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \series bold
 | |
| compose
 | |
| \series default
 | |
|  in its first argument,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{2}^{-1}}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  in its second argument,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial\left(T_{1}T_{2}\right)}{\partial\xi_{2}}=I_{6}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \series bold
 | |
| between
 | |
| \series default
 | |
|  in its first argument,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}}=\Ad{T_{2}^{^{-1}}T_{1}}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and in its second argument,
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| \frac{\partial\left(T_{1}^{^{-1}}T_{2}\right)}{\partial\xi_{1}} & = & I_{6}
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection
 | |
| Retractions
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| For 
 | |
| \begin_inset Formula $\SEthree$
 | |
| \end_inset
 | |
| 
 | |
| , instead of using the true exponential map it is computationally more efficient
 | |
|  to design other retractions.
 | |
|  A first-order approximation to the exponential map does not quite cut it,
 | |
|  as it yields a 
 | |
| \begin_inset Formula $4\times4$
 | |
| \end_inset
 | |
| 
 | |
|  matrix which is not in 
 | |
| \begin_inset Formula $\SEthree$
 | |
| \end_inset
 | |
| 
 | |
| : 
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| T\exp\xihat & \approx & T(I+\xihat)\\
 | |
|  & = & T\left(I_{4}+\left[\begin{array}{cc}
 | |
| \Skew{\omega} & v\\
 | |
| 0 & 0
 | |
| \end{array}\right]\right)\\
 | |
|  & = & \left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| I_{3}+\Skew{\omega} & v\\
 | |
| 0 & 1
 | |
| \end{array}\right]\\
 | |
|  & = & \left[\begin{array}{cc}
 | |
| R\left(I_{3}+\Skew{\omega}\right) & t+Rv\\
 | |
| 0 & 1
 | |
| \end{array}\right]
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| However, we can make it into a retraction by using any retraction defined
 | |
|  for 
 | |
| \begin_inset Formula $\SOthree$
 | |
| \end_inset
 | |
| 
 | |
| , including, as below, using the exponential map 
 | |
| \begin_inset Formula $Re^{\Skew{\omega}}$
 | |
| \end_inset
 | |
| 
 | |
| :
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \retract_{T}\left(\left[\begin{array}{c}
 | |
| \omega\\
 | |
| v
 | |
| \end{array}\right]\right)=\left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| e^{\Skew{\omega}} & v\\
 | |
| 0 & 1
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| Re^{\Skew{\omega}} & t+Rv\\
 | |
| 0 & 1
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Similarly, for a second order approximation we have
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| T\exp\xihat & \approx & T(I+\xihat+\frac{\xihat^{2}}{2})\\
 | |
|  & = & T\left(I_{4}+\left[\begin{array}{cc}
 | |
| \Skew{\omega} & v\\
 | |
| 0 & 0
 | |
| \end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
 | |
| \Skew{\omega} & v\\
 | |
| 0 & 0
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| \Skew{\omega} & v\\
 | |
| 0 & 0
 | |
| \end{array}\right]\right)\\
 | |
|  & = & \left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left(\left[\begin{array}{cc}
 | |
| I_{3}+\Skew{\omega}+\frac{1}{2}\Skew{\omega}^{2} & v+\frac{1}{2}\Skew{\omega}v\\
 | |
| 0 & 1
 | |
| \end{array}\right]\right)\\
 | |
|  & = & \left[\begin{array}{cc}
 | |
| R\left(I_{3}+\Skew{\omega}+\frac{1}{2}\Skew{\omega}^{2}\right) & t+R\left[v+\left(\omega\times v\right)/2\right]\\
 | |
| 0 & 1
 | |
| \end{array}\right]
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| inspiring the retraction
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \retract_{T}\left(\left[\begin{array}{c}
 | |
| \omega\\
 | |
| v
 | |
| \end{array}\right]\right)=\left[\begin{array}{cc}
 | |
| R & t\\
 | |
| 0 & 1
 | |
| \end{array}\right]\left[\begin{array}{cc}
 | |
| e^{\Skew{\omega}} & v+\left(\omega\times v\right)/2\\
 | |
| 0 & 1
 | |
| \end{array}\right]=\left[\begin{array}{cc}
 | |
| Re^{\Skew{\omega}} & t+R\left[v+\left(\omega\times v\right)/2\right]\\
 | |
| 0 & 1
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Newpage pagebreak
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| 2D Line Segments (Ocaml)
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The error between an infinite line 
 | |
| \begin_inset Formula $(a,b,c)$
 | |
| \end_inset
 | |
| 
 | |
|  and a 2D line segment 
 | |
| \begin_inset Formula $((x1,y1),(x2,y2))$
 | |
| \end_inset
 | |
| 
 | |
|  is defined in Line3.ml.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Line3vd (Ocaml)
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| One representation of a line is through 2 vectors 
 | |
| \begin_inset Formula $(v,d)$
 | |
| \end_inset
 | |
| 
 | |
| , where 
 | |
| \begin_inset Formula $v$
 | |
| \end_inset
 | |
| 
 | |
|  is the direction and the vector 
 | |
| \begin_inset Formula $d$
 | |
| \end_inset
 | |
| 
 | |
|  points from the orgin to the closest point on the line.
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| In this representation, transforming a 3D line from a world coordinate frame
 | |
|  to a camera at 
 | |
| \begin_inset Formula $(R_{w}^{c},t^{w})$
 | |
| \end_inset
 | |
| 
 | |
|  is done by
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| v^{c}=R_{w}^{c}v^{w}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| d^{c}=R_{w}^{c}\left(d^{w}+(t^{w}v^{w})v^{w}-t^{w}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| Line3 (Ocaml)
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| For 3D lines, we use a parameterization due to C.J.
 | |
|  Taylor, using a rotation matrix 
 | |
| \begin_inset Formula $R$
 | |
| \end_inset
 | |
| 
 | |
|  and 2 scalars 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $b$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  The line direction 
 | |
| \begin_inset Formula $v$
 | |
| \end_inset
 | |
| 
 | |
|  is simply the Z-axis of the rotated frame, i.e., 
 | |
| \begin_inset Formula $v=R_{3}$
 | |
| \end_inset
 | |
| 
 | |
| , while the vector 
 | |
| \begin_inset Formula $d$
 | |
| \end_inset
 | |
| 
 | |
|  is given by 
 | |
| \begin_inset Formula $d=aR_{1}+bR_{2}$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Now, we will 
 | |
| \emph on
 | |
| not
 | |
| \emph default
 | |
|  use the incremental rotation scheme we used for rotations: because the
 | |
|  matrix R translates from the line coordinate frame to the world frame,
 | |
|  we need to apply the incremental rotation on the right-side:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| R'=R(I+\Omega)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Projecting a line to 2D can be done easily, as both 
 | |
| \begin_inset Formula $v$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $d$
 | |
| \end_inset
 | |
| 
 | |
|  are also the 2D homogenous coordinates of two points on the projected line,
 | |
|  and hence we have
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| l & = & v\times d\\
 | |
|  & = & R_{3}\times\left(aR_{1}+bR_{2}\right)\\
 | |
|  & = & a\left(R_{3}\times R_{1}\right)+b\left(R_{3}\times R_{2}\right)\\
 | |
|  & = & aR_{2}-bR_{1}
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| This can be written as a rotation of a point,
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| l=R\left(\begin{array}{c}
 | |
| -b\\
 | |
| a\\
 | |
| 0
 | |
| \end{array}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| but because the incremental rotation is now done on the right, we need to
 | |
|  figure out the derivatives again:
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \frac{\partial(R(I+\Omega)x)}{\partial\omega}=\frac{\partial(R\Omega x)}{\partial\omega}=R\frac{\partial(\Omega x)}{\partial\omega}=R\Skew{-x}\label{eq:rotateRight}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and hence the derivative of the projection 
 | |
| \begin_inset Formula $l$
 | |
| \end_inset
 | |
| 
 | |
|  with respect to the rotation matrix 
 | |
| \begin_inset Formula $R$
 | |
| \end_inset
 | |
| 
 | |
| of the 3D line is 
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \frac{\partial(l)}{\partial\omega}=R\Skew{\left(\begin{array}{c}
 | |
| b\\
 | |
| -a\\
 | |
| 0
 | |
| \end{array}\right)}=\left[\begin{array}{ccc}
 | |
| aR_{3} & bR_{3} & -(aR_{1}+bR_{2})\end{array}\right]
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| or the 
 | |
| \begin_inset Formula $a,b$
 | |
| \end_inset
 | |
| 
 | |
|  scalars:
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial(l)}{\partial a}=R_{2}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial(l)}{\partial b}=-R_{1}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Transforming a 3D line 
 | |
| \begin_inset Formula $(R,(a,b))$
 | |
| \end_inset
 | |
| 
 | |
|  from a world coordinate frame to a camera frame 
 | |
| \begin_inset Formula $(R_{w}^{c},t^{w})$
 | |
| \end_inset
 | |
| 
 | |
|  is done by
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| R'=R_{w}^{c}R
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| a'=a-R_{1}^{T}t^{w}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| b'=b-R_{2}^{T}t^{w}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Again, we need to redo the derivatives, as R is incremented from the right.
 | |
|  The first argument is incremented from the left, but the result is incremented
 | |
|  on the right:
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| R'(I+\Omega')=(AB)(I+\Omega') & = & (I+\Skew{S\omega})AB\\
 | |
| I+\Omega' & = & (AB)^{T}(I+\Skew{S\omega})(AB)\\
 | |
| \Omega' & = & R'^{T}\Skew{S\omega}R'\\
 | |
| \Omega' & = & \Skew{R'^{T}S\omega}\\
 | |
| \omega' & = & R'^{T}S\omega
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| For the second argument 
 | |
| \begin_inset Formula $R$
 | |
| \end_inset
 | |
| 
 | |
|  we now simply have:
 | |
| \begin_inset Formula 
 | |
| \begin{eqnarray*}
 | |
| AB(I+\Omega') & = & AB(I+\Omega)\\
 | |
| \Omega' & = & \Omega\\
 | |
| \omega' & = & \omega
 | |
| \end{eqnarray*}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| The scalar derivatives can be found by realizing that 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \left(\begin{array}{c}
 | |
| a'\\
 | |
| b'\\
 | |
| ...
 | |
| \end{array}\right)=\left(\begin{array}{c}
 | |
| a\\
 | |
| b\\
 | |
| 0
 | |
| \end{array}\right)-R^{T}t^{w}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where we don't care about the third row.
 | |
|  Hence
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{\partial(\left(R(I+\Omega_{2})\right)^{T}t^{w})}{\partial\omega}=-\frac{\partial(\Omega_{2}R^{T}t^{w})}{\partial\omega}=-\Skew{R^{T}t^{w}}=\left[\begin{array}{ccc}
 | |
| 0 & R_{3}^{T}t^{w} & -R_{2}^{T}t^{w}\\
 | |
| -R_{3}^{T}t^{w} & 0 & R_{1}^{T}t^{w}\\
 | |
| ... & ... & 0
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section
 | |
| 
 | |
| \series bold
 | |
| Aligning 3D Scans
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Below is the explanaition underlying Pose3.align, i.e.
 | |
|  aligning two point clouds using SVD.
 | |
|  Inspired but modified from CVOnline...
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| 
 | |
| \emph on
 | |
| Our
 | |
| \emph default
 | |
|  model is
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| p^{c}=R\left(p^{w}-t\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| i.e., 
 | |
| \begin_inset Formula $R$
 | |
| \end_inset
 | |
| 
 | |
|  is from camera to world, and 
 | |
| \begin_inset Formula $t$
 | |
| \end_inset
 | |
| 
 | |
|  is the camera location in world coordinates.
 | |
|  The objective function is
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| \frac{1}{2}\sum\left(p^{c}-R(p^{w}-t)\right)^{2}=\frac{1}{2}\sum\left(p^{c}-Rp^{w}+Rt\right)^{2}=\frac{1}{2}\sum\left(p^{c}-Rp^{w}-t'\right)^{2}\label{eq:J}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $t'=-Rt$
 | |
| \end_inset
 | |
| 
 | |
|  is the location of the origin in the camera frame.
 | |
|  Taking the derivative with respect to 
 | |
| \begin_inset Formula $t'$
 | |
| \end_inset
 | |
| 
 | |
|  and setting to zero we have
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \sum\left(p^{c}-Rp^{w}-t'\right)=0
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| or
 | |
| \begin_inset Formula 
 | |
| \begin{equation}
 | |
| t'=\frac{1}{n}\sum\left(p^{c}-Rp^{w}\right)=\bar{p}^{c}-R\bar{p}^{w}\label{eq:t}
 | |
| \end{equation}
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| here 
 | |
| \begin_inset Formula $\bar{p}^{c}$
 | |
| \end_inset
 | |
| 
 | |
|  and 
 | |
| \begin_inset Formula $\bar{p}^{w}$
 | |
| \end_inset
 | |
| 
 | |
|  are the point cloud centroids.
 | |
|  Substituting back into 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:J"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| , we get
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \frac{1}{2}\sum\left(p^{c}-R(p^{w}-t)\right)^{2}=\frac{1}{2}\sum\left(\left(p^{c}-\bar{p}^{c}\right)-R\left(p^{w}-\bar{p}^{w}\right)\right)^{2}=\frac{1}{2}\sum\left(\hat{p}^{c}-R\hat{p}^{w}\right)^{2}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Now, to minimize the above it suffices to maximize (see CVOnline) 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \mathop{trace}\left(R^{T}C\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| where 
 | |
| \begin_inset Formula $C=\sum\hat{p}^{c}\left(\hat{p}^{w}\right)^{T}$
 | |
| \end_inset
 | |
| 
 | |
|  is the correlation matrix.
 | |
|  Intuitively, the cloud of points is rotated to align with the principal
 | |
|  axes.
 | |
|  This can be achieved by SVD decomposition on 
 | |
| \begin_inset Formula $C$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| C=USV^{T}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| and setting 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| R=UV^{T}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Clearly, from 
 | |
| \begin_inset CommandInset ref
 | |
| LatexCommand eqref
 | |
| reference "eq:t"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  we then also recover the optimal 
 | |
| \begin_inset Formula $t$
 | |
| \end_inset
 | |
| 
 | |
|  as 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| t=\bar{p}^{w}-R^{T}\bar{p}^{c}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Section*
 | |
| Appendix
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection*
 | |
| Differentiation Rules
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| Spivak 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| key "Spivak65book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
|  also notes some multivariate derivative rules defined component-wise, but
 | |
|  they are not that useful in practice:
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Itemize
 | |
| Since 
 | |
| \begin_inset Formula $f:\Multi nm$
 | |
| \end_inset
 | |
| 
 | |
|  is defined in terms of 
 | |
| \begin_inset Formula $m$
 | |
| \end_inset
 | |
| 
 | |
|  component functions 
 | |
| \begin_inset Formula $f^{i}$
 | |
| \end_inset
 | |
| 
 | |
| , then 
 | |
| \begin_inset Formula $f$
 | |
| \end_inset
 | |
| 
 | |
|  is differentiable at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
|  iff each 
 | |
| \begin_inset Formula $f^{i}$
 | |
| \end_inset
 | |
| 
 | |
|  is, and the Jacobian matrix 
 | |
| \begin_inset Formula $F_{a}$
 | |
| \end_inset
 | |
| 
 | |
|  is the 
 | |
| \begin_inset Formula $m\times n$
 | |
| \end_inset
 | |
| 
 | |
|  matrix whose 
 | |
| \begin_inset Formula $i^{th}$
 | |
| \end_inset
 | |
| 
 | |
|  row is 
 | |
| \begin_inset Formula $\left(f^{i}\right)'(a)$
 | |
| \end_inset
 | |
| 
 | |
| : 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| F_{a}\define f'(a)=\left[\begin{array}{c}
 | |
| \left(f^{1}\right)'(a)\\
 | |
| \vdots\\
 | |
| \left(f^{m}\right)'(a)
 | |
| \end{array}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Itemize
 | |
| Scalar differentiation rules: if 
 | |
| \begin_inset Formula $f,g:\OneD n$
 | |
| \end_inset
 | |
| 
 | |
|  are differentiable at 
 | |
| \begin_inset Formula $a$
 | |
| \end_inset
 | |
| 
 | |
| , then
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| (f+g)'(a)=F_{a}+G_{a}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| (f\cdot g)'(a)=g(a)F_{a}+f(a)G_{a}
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| (f/g)'(a)=\frac{1}{g(a)^{2}}\left[g(a)F_{a}-f(a)G_{a}\right]
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection*
 | |
| Tangent Spaces and the Tangent Bundle
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The following is adapted from Appendix A in 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| key "Murray94book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The 
 | |
| \series bold
 | |
| tangent space
 | |
| \series default
 | |
|  
 | |
| \begin_inset Formula $T_{p}M$
 | |
| \end_inset
 | |
| 
 | |
|  of a manifold 
 | |
| \begin_inset Formula $M$
 | |
| \end_inset
 | |
| 
 | |
|  at a point 
 | |
| \begin_inset Formula $p\in M$
 | |
| \end_inset
 | |
| 
 | |
|  is the vector space of 
 | |
| \series bold
 | |
| tangent vectors
 | |
| \series default
 | |
|  at 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
|  The 
 | |
| \series bold
 | |
| tangent bundle
 | |
| \series default
 | |
|  
 | |
| \begin_inset Formula $TM$
 | |
| \end_inset
 | |
| 
 | |
|  is the set of all tangent vectors
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| TM\define\bigcup_{p\in M}T_{p}M
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| A 
 | |
| \series bold
 | |
| vector field
 | |
| \series default
 | |
|  
 | |
| \begin_inset Formula $X:M\rightarrow TM$
 | |
| \end_inset
 | |
| 
 | |
|  assigns a single tangent vector 
 | |
| \begin_inset Formula $x\in T_{p}M$
 | |
| \end_inset
 | |
| 
 | |
|  to each point 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| If 
 | |
| \begin_inset Formula $F:M\rightarrow N$
 | |
| \end_inset
 | |
| 
 | |
|  is a smooth map from a manifold 
 | |
| \begin_inset Formula $M$
 | |
| \end_inset
 | |
| 
 | |
|  to a manifold 
 | |
| \begin_inset Formula $N$
 | |
| \end_inset
 | |
| 
 | |
| , then we can define the
 | |
| \series bold
 | |
|  tangent map
 | |
| \series default
 | |
|  of 
 | |
| \begin_inset Formula $F$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
|  as the linear map 
 | |
| \begin_inset Formula $F_{*p}:T_{p}M\rightarrow T_{F(p)}N$
 | |
| \end_inset
 | |
| 
 | |
|  that maps tangent vectors in 
 | |
| \begin_inset Formula $T_{p}M$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $p$
 | |
| \end_inset
 | |
| 
 | |
|  to tangent vectors in 
 | |
| \begin_inset Formula $T_{F(p)}N$
 | |
| \end_inset
 | |
| 
 | |
|  at the image 
 | |
| \begin_inset Formula $F(p)$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Subsection*
 | |
| Homomorphisms
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| The following 
 | |
| \emph on
 | |
| might be
 | |
| \emph default
 | |
|  relevant 
 | |
| \begin_inset CommandInset citation
 | |
| LatexCommand cite
 | |
| after "page 45"
 | |
| key "Hall00book"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| : suppose that 
 | |
| \begin_inset Formula $\Phi:G\rightarrow H$
 | |
| \end_inset
 | |
| 
 | |
|  is a mapping (Lie group homomorphism).
 | |
|  Then there exists a unique linear map 
 | |
| \begin_inset Formula $\phi:\gg\rightarrow\mathfrak{h}$
 | |
| \end_inset
 | |
| 
 | |
|  
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(e^{t\xhat}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| such that
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Enumerate
 | |
| \begin_inset Formula $\Phi\left(e^{\xhat}\right)=e^{\phi\left(\xhat\right)}$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Enumerate
 | |
| \begin_inset Formula $\phi\left(T\xhat T^{-1}\right)=\Phi(T)\phi(\xhat)\Phi(T^{-1})$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Enumerate
 | |
| \begin_inset Formula $\phi\left([\xhat,\yhat]\right)=\left[\phi(\xhat),\phi(\yhat)\right]$
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| In other words, the map 
 | |
| \begin_inset Formula $\phi$
 | |
| \end_inset
 | |
| 
 | |
|  is the derivative of 
 | |
| \begin_inset Formula $\Phi$
 | |
| \end_inset
 | |
| 
 | |
|  at the identity.
 | |
|  As an example, suppose 
 | |
| \begin_inset Formula $\Phi(g)=g^{-1}$
 | |
| \end_inset
 | |
| 
 | |
| , then the corresponding derivative 
 | |
| \emph on
 | |
| at the identity 
 | |
| \emph default
 | |
| is
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\left(e^{t\xhat}\right)^{-1}=\lim_{t\rightarrow0}\frac{d}{dt}e^{-t\xhat}=-\xhat\lim_{t\rightarrow0}e^{-t\xhat}=-\xhat
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| In general it suffices to compute 
 | |
| \begin_inset Formula $\phi$
 | |
| \end_inset
 | |
| 
 | |
|  for a basis of 
 | |
| \begin_inset Formula $\gg$
 | |
| \end_inset
 | |
| 
 | |
| .
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Note Note
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| Undercooked: What if we want the derivative of 
 | |
| \begin_inset Formula $\Phi$
 | |
| \end_inset
 | |
| 
 | |
|  at some other element 
 | |
| \begin_inset Formula $g$
 | |
| \end_inset
 | |
| 
 | |
| ? In other words, if we apply 
 | |
| \begin_inset Formula $\Phi$
 | |
| \end_inset
 | |
| 
 | |
|  at 
 | |
| \begin_inset Formula $g$
 | |
| \end_inset
 | |
| 
 | |
|  incremented by some Lie algebra element 
 | |
| \begin_inset Formula $e^{\xhat}$
 | |
| \end_inset
 | |
| 
 | |
| , then we are looking for a 
 | |
| \begin_inset Formula $\yhat\in\gg$
 | |
| \end_inset
 | |
| 
 | |
|  will yield the same result: 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Phi\left(g\right)\lim_{t\rightarrow0}\frac{d}{dt}e^{t\yhat}=\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(ge^{t\xhat}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \lim_{t\rightarrow0}\frac{d}{dt}e^{t\yhat}=\Phi\left(g\right)^{-1}\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(ge^{t\xhat}\right)
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset Note Note
 | |
| status collapsed
 | |
| 
 | |
| \begin_layout Plain Layout
 | |
| Let us define two mappings
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \Phi_{1}(A)=AB\mbox{ and }\Phi_{2}(B)=AB
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| Then 
 | |
| \begin_inset Formula 
 | |
| \[
 | |
| \phi_{1}(\xhat)=\lim_{t\rightarrow0}\frac{d}{dt}\Phi_{1}\left(e^{t\xhat}B\right)=
 | |
| \]
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \begin_layout Standard
 | |
| \begin_inset CommandInset bibtex
 | |
| LatexCommand bibtex
 | |
| bibfiles "/Users/dellaert/papers/refs"
 | |
| options "plain"
 | |
| 
 | |
| \end_inset
 | |
| 
 | |
| 
 | |
| \end_layout
 | |
| 
 | |
| \end_body
 | |
| \end_document
 |