gtsam/gtsam/nonlinear/ISAM2-impl-inl.h

351 lines
16 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ISAM2-impl-inl.h
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
* @author Michael Kaess, Richard Roberts
*/
namespace gtsam {
using namespace std;
template<class CONDITIONAL, class GRAPH>
struct ISAM2<CONDITIONAL, GRAPH>::Impl {
typedef ISAM2<CONDITIONAL, GRAPH> ISAM2Type;
struct PartialSolveResult {
typename ISAM2Type::sharedClique bayesTree;
Permutation fullReordering;
Permutation fullReorderingInverse;
};
struct ReorderingMode {
size_t nFullSystemVars;
enum { /*AS_ADDED,*/ COLAMD } algorithm;
enum { NO_CONSTRAINT, CONSTRAIN_LAST } constrain;
boost::optional<const FastSet<Index>&> constrainedKeys;
};
/**
* Add new variables to the ISAM2 system.
* @param newTheta Initial values for new variables
* @param theta Current solution to be augmented with new initialization
* @param delta Current linear delta to be augmented with zeros
* @param ordering Current ordering to be augmented with new variables
* @param nodes Current BayesTree::Nodes index to be augmented with slots for new variables
*/
static void AddVariables(const Values& newTheta, Values& theta, Permuted<VectorValues>& delta, Ordering& ordering, typename Base::Nodes& nodes);
/**
* Extract the set of variable indices from a NonlinearFactorGraph. For each Symbol
* in each NonlinearFactor, obtains the index by calling ordering[symbol].
* @param ordering The current ordering from which to obtain the variable indices
* @param factors The factors from which to extract the variables
* @return The set of variables indices from the factors
*/
static FastSet<Index> IndicesFromFactors(const Ordering& ordering, const GRAPH& factors);
/**
* Find the set of variables to be relinearized according to relinearizeThreshold.
* Any variables in the VectorValues delta whose vector magnitude is greater than
* or equal to relinearizeThreshold are returned.
* @param delta The linear delta to check against the threshold
* @return The set of variable indices in delta whose magnitude is greater than or
* equal to relinearizeThreshold
*/
static FastSet<Index> CheckRelinearization(const Permuted<VectorValues>& delta, const Ordering& ordering, const ISAM2Params::RelinearizationThreshold& relinearizeThreshold);
/**
* Recursively search this clique and its children for marked keys appearing
* in the separator, and add the *frontal* keys of any cliques whose
* separator contains any marked keys to the set \c keys. The purpose of
* this is to discover the cliques that need to be redone due to information
* propagating to them from cliques that directly contain factors being
* relinearized.
*
* The original comment says this finds all variables directly connected to
* the marked ones by measurements. Is this true, because it seems like this
* would also pull in variables indirectly connected through other frontal or
* separator variables?
*
* Alternatively could we trace up towards the root for each variable here?
*/
static void FindAll(typename ISAM2Clique<CONDITIONAL>::shared_ptr clique, FastSet<Index>& keys, const vector<bool>& markedMask);
/**
* Apply expmap to the given values, but only for indices appearing in
* \c markedRelinMask. Values are expmapped in-place.
* \param [in][out] values The value to expmap in-place
* \param delta The linear delta with which to expmap
* \param ordering The ordering
* \param mask Mask on linear indices, only \c true entries are expmapped
* \param invalidateIfDebug If this is true, *and* NDEBUG is not defined,
* expmapped deltas will be set to an invalid value (infinity) to catch bugs
* where we might expmap something twice, or expmap it but then not
* recalculate its delta.
*/
static void ExpmapMasked(Values& values, const Permuted<VectorValues>& delta,
const Ordering& ordering, const std::vector<bool>& mask,
boost::optional<Permuted<VectorValues>&> invalidateIfDebug = boost::optional<Permuted<VectorValues>&>());
/**
* Reorder and eliminate factors. These factors form a subset of the full
* problem, so along with the BayesTree we get a partial reordering of the
* problem that needs to be applied to the other data in ISAM2, which is the
* VariableIndex, the delta, the ordering, and the orphans (including cached
* factors).
* \param factors The factors to eliminate, representing part of the full
* problem. This is permuted during use and so is cleared when this function
* returns in order to invalidate it.
* \param keys The set of indices used in \c factors.
* \return The eliminated BayesTree and the permutation to be applied to the
* rest of the ISAM2 data.
*/
static PartialSolveResult PartialSolve(GaussianFactorGraph& factors, const FastSet<Index>& keys,
const ReorderingMode& reorderingMode);
};
/* ************************************************************************* */
template<class CONDITIONAL, class GRAPH>
void ISAM2<CONDITIONAL,GRAPH>::Impl::AddVariables(
const Values& newTheta, Values& theta, Permuted<VectorValues>& delta, Ordering& ordering, typename Base::Nodes& nodes) {
const bool debug = ISDEBUG("ISAM2 AddVariables");
theta.insert(newTheta);
if(debug) newTheta.print("The new variables are: ");
// Add the new keys onto the ordering, add zeros to the delta for the new variables
std::vector<Index> dims(newTheta.dims(*newTheta.orderingArbitrary()));
if(debug) cout << "New variables have total dimensionality " << accumulate(dims.begin(), dims.end(), 0) << endl;
const size_t newDim = accumulate(dims.begin(), dims.end(), 0);
const size_t originalDim = delta->dim();
const size_t originalnVars = delta->size();
delta.container().append(dims);
delta.container().vector().segment(originalDim, newDim).operator=(Vector::Zero(newDim));
delta.permutation().resize(originalnVars + newTheta.size());
{
Index nextVar = originalnVars;
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
delta.permutation()[nextVar] = nextVar;
ordering.insert(key_value.first, nextVar);
if(debug) cout << "Adding variable " << (string)key_value.first << " with order " << nextVar << endl;
++ nextVar;
}
assert(delta.permutation().size() == delta.container().size());
assert(ordering.nVars() == delta.size());
assert(ordering.size() == delta.size());
}
assert(ordering.nVars() >= nodes.size());
nodes.resize(ordering.nVars());
}
/* ************************************************************************* */
template<class CONDITIONAL, class GRAPH>
FastSet<Index> ISAM2<CONDITIONAL,GRAPH>::Impl::IndicesFromFactors(const Ordering& ordering, const GRAPH& factors) {
FastSet<Index> indices;
BOOST_FOREACH(const typename NonlinearFactor::shared_ptr& factor, factors) {
BOOST_FOREACH(const Symbol& key, factor->keys()) {
indices.insert(ordering[key]);
}
}
return indices;
}
/* ************************************************************************* */
template<class CONDITIONAL, class GRAPH>
FastSet<Index> ISAM2<CONDITIONAL,GRAPH>::Impl::CheckRelinearization(const Permuted<VectorValues>& delta, const Ordering& ordering, const ISAM2Params::RelinearizationThreshold& relinearizeThreshold) {
FastSet<Index> relinKeys;
if(relinearizeThreshold.type() == typeid(double)) {
double threshold = boost::get<double>(relinearizeThreshold);
for(Index var=0; var<delta.size(); ++var) {
double maxDelta = delta[var].lpNorm<Eigen::Infinity>();
if(maxDelta >= threshold) {
relinKeys.insert(var);
}
}
} else if(relinearizeThreshold.type() == typeid(FastMap<char,Vector>)) {
const FastMap<char,Vector>& thresholds = boost::get<FastMap<char,Vector> >(relinearizeThreshold);
BOOST_FOREACH(const Ordering::value_type& key_index, ordering) {
const Vector& threshold = thresholds.find(key_index.first.chr())->second;
Index j = key_index.second;
if(threshold.rows() != delta[j].rows())
throw std::invalid_argument("Relinearization threshold vector dimensionality passed into iSAM2 parameters does not match actual variable dimensionality");
if((delta[j].array().abs() > threshold.array()).any())
relinKeys.insert(j);
}
}
return relinKeys;
}
/* ************************************************************************* */
template<class CONDITIONAL, class GRAPH>
void ISAM2<CONDITIONAL,GRAPH>::Impl::FindAll(typename ISAM2Clique<CONDITIONAL>::shared_ptr clique, FastSet<Index>& keys, const vector<bool>& markedMask) {
static const bool debug = false;
// does the separator contain any of the variables?
bool found = false;
BOOST_FOREACH(const Index& key, (*clique)->parents()) {
if (markedMask[key])
found = true;
}
if (found) {
// then add this clique
keys.insert((*clique)->beginFrontals(), (*clique)->endFrontals());
if(debug) clique->print("Key(s) marked in clique ");
if(debug) cout << "so marking key " << (*clique)->keys().front() << endl;
}
BOOST_FOREACH(const typename ISAM2Clique<CONDITIONAL>::shared_ptr& child, clique->children_) {
FindAll(child, keys, markedMask);
}
}
/* ************************************************************************* */
template<class CONDITIONAL, class GRAPH>
void ISAM2<CONDITIONAL, GRAPH>::Impl::ExpmapMasked(Values& values, const Permuted<VectorValues>& delta,
const Ordering& ordering, const vector<bool>& mask, boost::optional<Permuted<VectorValues>&> invalidateIfDebug) {
// If debugging, invalidate if requested, otherwise do not invalidate.
// Invalidating means setting expmapped entries to Inf, to trigger assertions
// if we try to re-use them.
#ifdef NDEBUG
invalidateIfDebug = boost::optional<Permuted<VectorValues>&>();
#endif
assert(values.size() == ordering.size());
Values::iterator key_value;
Ordering::const_iterator key_index;
for(key_value = values.begin(), key_index = ordering.begin();
key_value != values.end() && key_index != ordering.end(); ++key_value, ++key_index) {
assert(key_value->first == key_index->first);
const Index var = key_index->second;
if(ISDEBUG("ISAM2 update verbose")) {
if(mask[var])
cout << "expmap " << (string)key_value->first << " (j = " << var << "), delta = " << delta[var].transpose() << endl;
else
cout << " " << (string)key_value->first << " (j = " << var << "), delta = " << delta[var].transpose() << endl;
}
assert(delta[var].size() == (int)key_value->second.dim());
assert(delta[var].unaryExpr(&isfinite<double>).all());
if(mask[var]) {
Value* retracted = key_value->second.retract_(delta[var]);
key_value->second = *retracted;
retracted->deallocate_();
if(invalidateIfDebug)
(*invalidateIfDebug)[var].operator=(Vector::Constant(delta[var].rows(), numeric_limits<double>::infinity())); // Strange syntax to work with clang++ (bug in clang?)
}
}
}
/* ************************************************************************* */
template<class CONDITIONAL, class GRAPH>
typename ISAM2<CONDITIONAL, GRAPH>::Impl::PartialSolveResult
ISAM2<CONDITIONAL, GRAPH>::Impl::PartialSolve(GaussianFactorGraph& factors,
const FastSet<Index>& keys, const ReorderingMode& reorderingMode) {
static const bool debug = ISDEBUG("ISAM2 recalculate");
PartialSolveResult result;
tic(1,"select affected variables");
#ifndef NDEBUG
// Debug check that all variables involved in the factors to be re-eliminated
// are in affectedKeys, since we will use it to select a subset of variables.
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, factors) {
BOOST_FOREACH(Index key, factor->keys()) {
assert(find(keys.begin(), keys.end(), key) != keys.end());
}
}
#endif
Permutation affectedKeysSelector(keys.size()); // Create a permutation that pulls the affected keys to the front
Permutation affectedKeysSelectorInverse(keys.size() > 0 ? *keys.rbegin()+1 : 0 /*ordering_.nVars()*/); // And its inverse
#ifndef NDEBUG
// If debugging, fill with invalid values that will trip asserts if dereferenced
std::fill(affectedKeysSelectorInverse.begin(), affectedKeysSelectorInverse.end(), numeric_limits<Index>::max());
#endif
{ Index position=0; BOOST_FOREACH(Index var, keys) {
affectedKeysSelector[position] = var;
affectedKeysSelectorInverse[var] = position;
++ position; } }
if(debug) affectedKeysSelector.print("affectedKeysSelector: ");
if(debug) affectedKeysSelectorInverse.print("affectedKeysSelectorInverse: ");
factors.permuteWithInverse(affectedKeysSelectorInverse);
if(debug) factors.print("Factors to reorder/re-eliminate: ");
toc(1,"select affected variables");
tic(2,"variable index");
VariableIndex affectedFactorsIndex(factors); // Create a variable index for the factors to be re-eliminated
if(debug) affectedFactorsIndex.print("affectedFactorsIndex: ");
toc(2,"variable index");
tic(3,"ccolamd");
vector<int> cmember(affectedKeysSelector.size(), 0);
if(reorderingMode.constrain == ReorderingMode::CONSTRAIN_LAST) {
assert(reorderingMode.constrainedKeys);
if(keys.size() > reorderingMode.constrainedKeys->size()) {
BOOST_FOREACH(Index var, *reorderingMode.constrainedKeys) {
cmember[affectedKeysSelectorInverse[var]] = 1;
}
}
}
Permutation::shared_ptr affectedColamd(Inference::PermutationCOLAMD_(affectedFactorsIndex, cmember));
toc(3,"ccolamd");
tic(4,"ccolamd permutations");
Permutation::shared_ptr affectedColamdInverse(affectedColamd->inverse());
if(debug) affectedColamd->print("affectedColamd: ");
if(debug) affectedColamdInverse->print("affectedColamdInverse: ");
result.fullReordering =
*Permutation::Identity(reorderingMode.nFullSystemVars).partialPermutation(affectedKeysSelector, *affectedColamd);
result.fullReorderingInverse =
*Permutation::Identity(reorderingMode.nFullSystemVars).partialPermutation(affectedKeysSelector, *affectedColamdInverse);
if(debug) result.fullReordering.print("partialReordering: ");
toc(4,"ccolamd permutations");
tic(5,"permute affected variable index");
affectedFactorsIndex.permute(*affectedColamd);
toc(5,"permute affected variable index");
tic(6,"permute affected factors");
factors.permuteWithInverse(*affectedColamdInverse);
toc(6,"permute affected factors");
if(debug) factors.print("Colamd-ordered affected factors: ");
#ifndef NDEBUG
VariableIndex fromScratchIndex(factors);
assert(assert_equal(fromScratchIndex, affectedFactorsIndex));
#endif
// eliminate into a Bayes net
tic(7,"eliminate");
JunctionTree<GaussianFactorGraph, typename ISAM2Type::Clique> jt(factors, affectedFactorsIndex);
result.bayesTree = jt.eliminate(EliminatePreferLDL);
if(debug && result.bayesTree) {
if(boost::dynamic_pointer_cast<ISAM2Clique<CONDITIONAL> >(result.bayesTree))
cout << "Is an ISAM2 clique" << endl;
cout << "Re-eliminated BT:\n";
result.bayesTree->printTree("");
}
toc(7,"eliminate");
tic(8,"permute eliminated");
if(result.bayesTree) result.bayesTree->permuteWithInverse(affectedKeysSelector);
if(debug && result.bayesTree) {
cout << "Full var-ordered eliminated BT:\n";
result.bayesTree->printTree("");
}
toc(8,"permute eliminated");
return result;
}
}