244 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			244 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file   ISAM2_City10000.cpp
 | |
|  * @brief  Example of using ISAM2 estimation
 | |
|  *         with multiple odometry measurements.
 | |
|  * @author Varun Agrawal
 | |
|  * @date   January 22, 2025
 | |
|  */
 | |
| 
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| #include <gtsam/nonlinear/ISAM2Params.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #include <boost/algorithm/string/classification.hpp>
 | |
| #include <boost/algorithm/string/split.hpp>
 | |
| #include <fstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #include "City10000.h"
 | |
| 
 | |
| using namespace gtsam;
 | |
| 
 | |
| using symbol_shorthand::X;
 | |
| 
 | |
| // Experiment Class
 | |
| class Experiment {
 | |
|   /// The City10000 dataset
 | |
|   City10000Dataset dataset_;
 | |
| 
 | |
|  public:
 | |
|   // Parameters with default values
 | |
|   size_t maxLoopCount = 2000;  // 200 //2000 //8000
 | |
| 
 | |
|   // false: run original iSAM2 without ambiguities
 | |
|   // true: run original iSAM2 with ambiguities
 | |
|   bool isWithAmbiguity;
 | |
| 
 | |
|  private:
 | |
|   ISAM2 isam2_;
 | |
|   NonlinearFactorGraph graph_;
 | |
|   Values initial_;
 | |
|   Values results;
 | |
| 
 | |
|  public:
 | |
|   /// Construct with filename of experiment to run
 | |
|   explicit Experiment(const std::string& filename, bool isWithAmbiguity = false)
 | |
|       : dataset_(filename), isWithAmbiguity(isWithAmbiguity) {
 | |
|     ISAM2Params parameters;
 | |
|     parameters.optimizationParams = gtsam::ISAM2GaussNewtonParams(0.0);
 | |
|     parameters.relinearizeThreshold = 0.01;
 | |
|     parameters.relinearizeSkip = 1;
 | |
|     isam2_ = ISAM2(parameters);
 | |
|   }
 | |
| 
 | |
|   /// @brief Run the main experiment with a given maxLoopCount.
 | |
|   void run() {
 | |
|     // Initialize local variables
 | |
|     size_t index = 0;
 | |
| 
 | |
|     std::vector<std::pair<size_t, double>> smootherUpdateTimes;
 | |
| 
 | |
|     std::list<double> timeList;
 | |
| 
 | |
|     // Set up initial prior
 | |
|     Pose2 priorPose(0, 0, 0);
 | |
|     initial_.insert(X(0), priorPose);
 | |
|     graph_.addPrior<Pose2>(X(0), priorPose, kPriorNoiseModel);
 | |
| 
 | |
|     // Initial update
 | |
|     clock_t beforeUpdate = clock();
 | |
|     isam2_.update(graph_, initial_);
 | |
|     results = isam2_.calculateBestEstimate();
 | |
|     clock_t afterUpdate = clock();
 | |
|     smootherUpdateTimes.push_back(
 | |
|         std::make_pair(index, afterUpdate - beforeUpdate));
 | |
|     graph_.resize(0);
 | |
|     initial_.clear();
 | |
|     index += 1;
 | |
| 
 | |
|     // Start main loop
 | |
|     size_t keyS = 0;
 | |
|     size_t keyT = 0;
 | |
|     clock_t startTime = clock();
 | |
| 
 | |
|     std::vector<Pose2> poseArray;
 | |
|     std::pair<size_t, size_t> keys;
 | |
| 
 | |
|     while (dataset_.next(&poseArray, &keys) && index < maxLoopCount) {
 | |
|       keyS = keys.first;
 | |
|       keyT = keys.second;
 | |
|       size_t numMeasurements = poseArray.size();
 | |
| 
 | |
|       Pose2 odomPose;
 | |
|       if (isWithAmbiguity) {
 | |
|         // Get wrong intentionally
 | |
|         int id = index % numMeasurements;
 | |
|         odomPose = Pose2(poseArray[id]);
 | |
|       } else {
 | |
|         odomPose = poseArray[0];
 | |
|       }
 | |
| 
 | |
|       if (keyS == keyT - 1) {  // new X(key)
 | |
|         initial_.insert(X(keyT), results.at<Pose2>(X(keyS)) * odomPose);
 | |
|         graph_.add(
 | |
|             BetweenFactor<Pose2>(X(keyS), X(keyT), odomPose, kPoseNoiseModel));
 | |
| 
 | |
|       } else {  // loop
 | |
|         int id = index % numMeasurements;
 | |
|         if (isWithAmbiguity && id % 2 == 0) {
 | |
|           graph_.add(BetweenFactor<Pose2>(X(keyS), X(keyT), odomPose,
 | |
|                                           kPoseNoiseModel));
 | |
|         } else {
 | |
|           graph_.add(BetweenFactor<Pose2>(
 | |
|               X(keyS), X(keyT), odomPose,
 | |
|               noiseModel::Diagonal::Sigmas(Vector3::Ones() * 10.0)));
 | |
|         }
 | |
|         index++;
 | |
|       }
 | |
| 
 | |
|       clock_t beforeUpdate = clock();
 | |
|       isam2_.update(graph_, initial_);
 | |
|       results = isam2_.calculateBestEstimate();
 | |
|       clock_t afterUpdate = clock();
 | |
|       smootherUpdateTimes.push_back(
 | |
|           std::make_pair(index, afterUpdate - beforeUpdate));
 | |
|       graph_.resize(0);
 | |
|       initial_.clear();
 | |
|       index += 1;
 | |
| 
 | |
|       // Print loop index and time taken in processor clock ticks
 | |
|       if (index % 50 == 0 && keyS != keyT - 1) {
 | |
|         std::cout << "index: " << index << std::endl;
 | |
|         std::cout << "accTime:  " << timeList.back() / CLOCKS_PER_SEC
 | |
|                   << std::endl;
 | |
|       }
 | |
| 
 | |
|       if (keyS == keyT - 1) {
 | |
|         clock_t curTime = clock();
 | |
|         timeList.push_back(curTime - startTime);
 | |
|       }
 | |
| 
 | |
|       if (timeList.size() % 100 == 0 && (keyS == keyT - 1)) {
 | |
|         std::string stepFileIdx = std::to_string(100000 + timeList.size());
 | |
| 
 | |
|         std::ofstream stepOutfile;
 | |
|         std::string stepFileName = "step_files/ISAM2_City10000_S" + stepFileIdx;
 | |
|         stepOutfile.open(stepFileName + ".txt");
 | |
|         for (size_t i = 0; i < (keyT + 1); ++i) {
 | |
|           Pose2 outPose = results.at<Pose2>(X(i));
 | |
|           stepOutfile << outPose.x() << " " << outPose.y() << " "
 | |
|                       << outPose.theta() << std::endl;
 | |
|         }
 | |
|         stepOutfile.close();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     clock_t endTime = clock();
 | |
|     clock_t totalTime = endTime - startTime;
 | |
|     std::cout << "totalTime: " << totalTime / CLOCKS_PER_SEC << std::endl;
 | |
| 
 | |
|     /// Write results to file
 | |
|     writeResult(results, (keyT + 1), "ISAM2_City10000.txt");
 | |
| 
 | |
|     std::ofstream outfileTime;
 | |
|     std::string timeFileName = "ISAM2_City10000_time.txt";
 | |
|     outfileTime.open(timeFileName);
 | |
|     for (auto accTime : timeList) {
 | |
|       outfileTime << accTime << std::endl;
 | |
|     }
 | |
|     outfileTime.close();
 | |
|     std::cout << "Written cumulative time to: " << timeFileName << " file."
 | |
|               << std::endl;
 | |
| 
 | |
|     std::ofstream timingFile;
 | |
|     std::string timingFileName = "ISAM2_City10000_timing.txt";
 | |
|     timingFile.open(timingFileName);
 | |
|     for (size_t i = 0; i < smootherUpdateTimes.size(); i++) {
 | |
|       auto p = smootherUpdateTimes.at(i);
 | |
|       timingFile << p.first << ", " << p.second / CLOCKS_PER_SEC << std::endl;
 | |
|     }
 | |
|     timingFile.close();
 | |
|     std::cout << "Wrote timing information to " << timingFileName << std::endl;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Function to parse command-line arguments
 | |
| void parseArguments(int argc, char* argv[], size_t& maxLoopCount,
 | |
|                     bool& isWithAmbiguity) {
 | |
|   for (int i = 1; i < argc; ++i) {
 | |
|     std::string arg = argv[i];
 | |
|     if (arg == "--max-loop-count" && i + 1 < argc) {
 | |
|       maxLoopCount = std::stoul(argv[++i]);
 | |
|     } else if (arg == "--is-with-ambiguity" && i + 1 < argc) {
 | |
|       isWithAmbiguity = bool(std::stoul(argv[++i]));
 | |
|     } else if (arg == "--help") {
 | |
|       std::cout << "Usage: " << argv[0] << " [options]\n"
 | |
|                 << "Options:\n"
 | |
|                 << "  --max-loop-count <value>       Set the maximum loop "
 | |
|                    "count (default: 2000)\n"
 | |
|                 << "  --is-with-ambiguity <value=0/1>     Set whether to use "
 | |
|                    "ambiguous measurements "
 | |
|                    "(default: false)\n"
 | |
|                 << "  --help                         Show this help message\n";
 | |
|       std::exit(0);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
|   Experiment experiment(findExampleDataFile("T1_City10000_04.txt"));
 | |
|   // Experiment experiment("../data/mh_T1_City10000_04.txt"); //Type #1 only
 | |
|   // Experiment experiment("../data/mh_T3b_City10000_10.txt"); //Type #3 only
 | |
|   // Experiment experiment("../data/mh_T1_T3_City10000_04.txt"); //Type #1 +
 | |
|   // Type #3
 | |
| 
 | |
|   // Parse command-line arguments
 | |
|   parseArguments(argc, argv, experiment.maxLoopCount,
 | |
|                  experiment.isWithAmbiguity);
 | |
| 
 | |
|   // Run the experiment
 | |
|   experiment.run();
 | |
| 
 | |
|   return 0;
 | |
| }
 |