77 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Matlab
		
	
	
% This script tests the math of correcting joint marginals with root
 | 
						|
% shortcuts, using only simple matrix math and avoiding any GTSAM calls.
 | 
						|
% It turns out that it is not possible to correct root shortcuts for
 | 
						|
% joinoint marginals, thus actual_ij_1_2__ will not equal
 | 
						|
% expected_ij_1_2__.
 | 
						|
 | 
						|
%% Check that we get the BayesTree structure we are expecting
 | 
						|
fg = gtsam.SymbolicFactorGraph;
 | 
						|
fg.push_factor(1,3,7,10);
 | 
						|
fg.push_factor(2,5,7,10);
 | 
						|
fg.push_factor(3,4,7,8);
 | 
						|
fg.push_factor(5,6,7,8);
 | 
						|
fg.push_factor(7,8,9,10);
 | 
						|
fg.push_factor(10,11);
 | 
						|
fg.push_factor(11);
 | 
						|
fg.push_factor(7,8,9);
 | 
						|
fg.push_factor(7,8);
 | 
						|
fg.push_factor(5,6);
 | 
						|
fg.push_factor(3,4);
 | 
						|
 | 
						|
bt = gtsam.SymbolicMultifrontalSolver(fg).eliminate;
 | 
						|
bt
 | 
						|
 | 
						|
%%
 | 
						|
%  P( 10 11)
 | 
						|
%    P( 7 8 9 | 10)
 | 
						|
%      P( 5 6 | 7 8 10)
 | 
						|
%        P( 2 | 5 7 10)
 | 
						|
%      P( 3 4 | 7 8 10)
 | 
						|
%        P( 1 | 3 7 10)
 | 
						|
A = [ ...
 | 
						|
  % 1  2  3  4  5  6  7  8  9 10 11  b
 | 
						|
    1  0  2  0  0  0  3  0  0  4  0  5
 | 
						|
    0  6  0  0  7  0  8  0  0  9  0 10
 | 
						|
    0  0 11 12  0  0 13 14  0 15  0 16
 | 
						|
    0  0  0  0 17 18 19 20  0 21  0 22
 | 
						|
    0  0  0  0  0  0 23 24 25 26  0 27
 | 
						|
    0  0  0  0  0  0  0  0  0 28 29 30
 | 
						|
    0  0  0  0  0  0  0  0  0  0 31 32
 | 
						|
    0  0  0  0  0  0 33 34 35  0  0 36
 | 
						|
    0  0  0  0  0  0 37 38  0  0  0 39
 | 
						|
    0  0  0  0 40 41  0  0  0  0  0 42
 | 
						|
    0  0 43 44  0  0  0  0  0  0  0 45
 | 
						|
    %0  0  0  0 46  0  0  0  0  0  0 47
 | 
						|
    %0  0 48  0  0  0  0  0  0  0  0 49
 | 
						|
    ];
 | 
						|
 | 
						|
% Compute shortcuts
 | 
						|
shortcut3_7__10_11 = shortcut(A, [3,7], [10,11]);
 | 
						|
shortcut5_7__10_11 = shortcut(A, [5,7], [10,11]);
 | 
						|
 | 
						|
% Factor into pieces
 | 
						|
% Factor p(5,7|10,11) into p(5|7,10,11) p(7|10,11)
 | 
						|
[ si_si__sij_R, si_sij__R ] = eliminate(shortcut3_7__10_11, [3]);
 | 
						|
[ sj_sj__sij_R, sj_sij__R ] = eliminate(shortcut5_7__10_11, [5]);
 | 
						|
 | 
						|
% Get root marginal
 | 
						|
R__ = A([6,7], :);
 | 
						|
 | 
						|
% Get clique conditionals
 | 
						|
i_1__3_7_10 = A(1, :);
 | 
						|
j_2__5_7_10 = A(2, :);
 | 
						|
 | 
						|
% Check
 | 
						|
expected_ij_1_2__ = shortcut(A, [1,2], [])
 | 
						|
 | 
						|
% Compute joint
 | 
						|
ij_1_2_3_5_7_10_11 = [
 | 
						|
    i_1__3_7_10
 | 
						|
    j_2__5_7_10
 | 
						|
    si_si__sij_R
 | 
						|
    sj_sj__sij_R
 | 
						|
    si_sij__R
 | 
						|
    R__
 | 
						|
    ];
 | 
						|
actual_ij_1_2__ = shortcut(ij_1_2_3_5_7_10_11, [1,2], [])
 |