355 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Matlab
		
	
	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
% Atlanta, Georgia 30332-0415
 | 
						|
% All Rights Reserved
 | 
						|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
%
 | 
						|
% See LICENSE for the license information
 | 
						|
%
 | 
						|
% @brief Estimate trajectory, calibration, landmarks, body-camera offset,
 | 
						|
% IMU
 | 
						|
% @author Chris Beall
 | 
						|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
clear all;
 | 
						|
clc;
 | 
						|
import gtsam.*
 | 
						|
 | 
						|
write_video = false;
 | 
						|
 | 
						|
if(write_video)
 | 
						|
    videoObj = VideoWriter('test.avi');
 | 
						|
    videoObj.Quality = 100;
 | 
						|
    videoObj.FrameRate = 2;
 | 
						|
    open(videoObj);
 | 
						|
end
 | 
						|
 | 
						|
%% generate some landmarks
 | 
						|
nrPoints = 8;
 | 
						|
 landmarks = {Point3([20 15 1]'),...
 | 
						|
        Point3([22 7 -1]'),...
 | 
						|
        Point3([20 20 6]'),...
 | 
						|
        Point3([24 19 -4]'),...
 | 
						|
        Point3([26 17 -2]'),...
 | 
						|
        Point3([12 15 4]'),...
 | 
						|
        Point3([25 11 -6]'),...
 | 
						|
        Point3([23 10 4]')};
 | 
						|
    
 | 
						|
IMU_metadata.AccelerometerSigma = 1e-2;    
 | 
						|
IMU_metadata.GyroscopeSigma = 1e-2;
 | 
						|
IMU_metadata.AccelerometerBiasSigma = 1e-6;
 | 
						|
IMU_metadata.GyroscopeBiasSigma = 1e-6;
 | 
						|
IMU_metadata.IntegrationSigma = 1e-1;
 | 
						|
 | 
						|
curvature = 5.0;
 | 
						|
transformKey = 1000;
 | 
						|
calibrationKey = 2000;
 | 
						|
steps = 50;
 | 
						|
 | 
						|
fg = NonlinearFactorGraph;
 | 
						|
initial = Values;
 | 
						|
 | 
						|
%% intial landmarks and camera trajectory shifted in + y-direction
 | 
						|
y_shift = Point3(0,0.5,0);
 | 
						|
 | 
						|
% insert shifted points
 | 
						|
for i=1:nrPoints
 | 
						|
   initial.insert(100+i,landmarks{i}.compose(y_shift)); 
 | 
						|
end
 | 
						|
 | 
						|
figure(1);
 | 
						|
cla
 | 
						|
hold on;
 | 
						|
 | 
						|
%% initial pose priors
 | 
						|
pose_cov = noiseModel.Diagonal.Sigmas([0.1*pi/180; 0.1*pi/180; 0.1*pi/180; 1e-4; 1e-4; 1e-4]);
 | 
						|
 | 
						|
%% Actual camera translation coincides with odometry, but -90deg Z-X rotation
 | 
						|
camera_transform = Pose3(Rot3.RzRyRx(-pi/2, 0, -pi/2),y_shift);
 | 
						|
actual_transform = Pose3(Rot3.RzRyRx(-pi/2, 0, -pi/2),Point3());
 | 
						|
 | 
						|
trans_cov = noiseModel.Diagonal.Sigmas([1*pi/180; 1*pi/180; 1*pi/180; 20; 1e-6; 1e-6]);
 | 
						|
 | 
						|
 | 
						|
move_forward = Pose3(Rot3(),Point3(1,0,0));
 | 
						|
move_circle = Pose3(Rot3.RzRyRx(0.0,0.0,curvature*pi/180),Point3(1,0,0));
 | 
						|
covariance = noiseModel.Diagonal.Sigmas([5*pi/180; 5*pi/180; 5*pi/180; 0.05; 0.05; 0.05]);
 | 
						|
z_cov = noiseModel.Diagonal.Sigmas([1.0;1.0]);
 | 
						|
    
 | 
						|
%% calibration initialization
 | 
						|
K = Cal3_S2(900,900,0,640,480);
 | 
						|
K_corrupt = Cal3_S2(910,890,0,650,470);
 | 
						|
K_cov = noiseModel.Diagonal.Sigmas([20; 20; 0.001; 20; 20]);
 | 
						|
 | 
						|
cheirality_exception_count = 0;
 | 
						|
 | 
						|
isamParams = gtsam.ISAM2Params;
 | 
						|
isamParams.setFactorization('QR');
 | 
						|
isam = ISAM2(isamParams);
 | 
						|
 | 
						|
currentIMUPoseGlobal = Pose3();
 | 
						|
 | 
						|
%% Get initial conditions for the estimated trajectory
 | 
						|
currentVelocityGlobal = [1;0;0]; % the vehicle is stationary at the beginning
 | 
						|
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
 | 
						|
 | 
						|
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1.0);
 | 
						|
sigma_init_b = noiseModel.Isotropic.Sigmas([ 0.100; 0.100; 0.100; 5.00e-05; 5.00e-05; 5.00e-05 ]);
 | 
						|
sigma_between_b = [ IMU_metadata.AccelerometerBiasSigma * ones(3,1); IMU_metadata.GyroscopeBiasSigma * ones(3,1) ];
 | 
						|
g = [0;0;-9.8];
 | 
						|
w_coriolis = [0;0;0];
 | 
						|
 | 
						|
 | 
						|
for i=1:steps
 | 
						|
    
 | 
						|
    t = i-1;
 | 
						|
    
 | 
						|
    currentVelKey =  symbol('v',i);
 | 
						|
    currentBiasKey = symbol('b',i);
 | 
						|
    
 | 
						|
    initial.insert(currentVelKey, currentVelocityGlobal);
 | 
						|
    initial.insert(currentBiasKey, currentBias);
 | 
						|
    
 | 
						|
    if i==1
 | 
						|
        
 | 
						|
        % Pose Priors
 | 
						|
        fg.add(PriorFactorPose3(1, Pose3(),pose_cov));
 | 
						|
        fg.add(PriorFactorPose3(2, Pose3(Rot3(),Point3(1,0,0)),pose_cov));
 | 
						|
        
 | 
						|
        % insert first 
 | 
						|
        initial.insert(1, Pose3());
 | 
						|
        
 | 
						|
        % camera transform
 | 
						|
        initial.insert(transformKey,camera_transform);
 | 
						|
        fg.add(PriorFactorPose3(transformKey,camera_transform,trans_cov));
 | 
						|
 | 
						|
        % calibration
 | 
						|
        initial.insert(2000, K_corrupt);
 | 
						|
        fg.add(PriorFactorCal3_S2(calibrationKey,K_corrupt,K_cov));
 | 
						|
        
 | 
						|
        % velocity and bias evolution
 | 
						|
        fg.add(PriorFactorVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
 | 
						|
        fg.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
 | 
						|
        
 | 
						|
        result = initial;
 | 
						|
    end
 | 
						|
    if i == 2
 | 
						|
        fg.add(PriorFactorPose3(2, Pose3(Rot3(),Point3(1,0,0)),pose_cov));
 | 
						|
        fg.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
 | 
						|
        fg.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
 | 
						|
    end
 | 
						|
    if i > 1
 | 
						|
        if i < 11   
 | 
						|
            step = move_forward;
 | 
						|
        else
 | 
						|
            step = move_circle;
 | 
						|
        end
 | 
						|
        
 | 
						|
        initial.insert(i,result.at(i-1).compose(step));
 | 
						|
        fg.add(BetweenFactorPose3(i-1,i, step, covariance));
 | 
						|
        
 | 
						|
        deltaT = 1;
 | 
						|
        logmap = Pose3.Logmap(step);
 | 
						|
        omega = logmap(1:3);
 | 
						|
        velocity = logmap(4:6);
 | 
						|
        %% Simulate IMU measurements, considering Coriolis effect 
 | 
						|
        % (in this simple example we neglect gravity and there are no other forces acting on the body)
 | 
						|
        acc_omega = imuSimulator.calculateIMUMeas_coriolis( ...
 | 
						|
        omega, omega, velocity, velocity, deltaT);
 | 
						|
    
 | 
						|
        [ currentIMUPoseGlobal, currentVelocityGlobal ] = imuSimulator.integrateTrajectory( ...
 | 
						|
    currentIMUPoseGlobal, omega, velocity, velocity, deltaT);
 | 
						|
 | 
						|
        currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
 | 
						|
        currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
 | 
						|
        IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
 | 
						|
    
 | 
						|
        accMeas = acc_omega(1:3)-g;
 | 
						|
        omegaMeas = acc_omega(4:6);
 | 
						|
        currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
 | 
						|
 | 
						|
        %% create IMU factor
 | 
						|
        fg.add(ImuFactor( ...
 | 
						|
        i-1, currentVelKey-1, ...
 | 
						|
        i, currentVelKey, ...
 | 
						|
        currentBiasKey, currentSummarizedMeasurement, g, w_coriolis));
 | 
						|
    
 | 
						|
        % Bias evolution as given in the IMU metadata
 | 
						|
        fg.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), ...
 | 
						|
        noiseModel.Diagonal.Sigmas(sqrt(steps) * sigma_between_b)));
 | 
						|
 | 
						|
    end
 | 
						|
    
 | 
						|
    % generate some camera measurements
 | 
						|
    cam_pose = currentIMUPoseGlobal.compose(actual_transform);
 | 
						|
%     gtsam.plotPose3(cam_pose);
 | 
						|
    cam = PinholeCameraCal3_S2(cam_pose,K);
 | 
						|
    i
 | 
						|
%     result
 | 
						|
    for j=1:nrPoints
 | 
						|
        % All landmarks seen in every frame
 | 
						|
        try
 | 
						|
            z = cam.project(landmarks{j});
 | 
						|
            fg.add(TransformCalProjectionFactorCal3_S2(z, z_cov, i, transformKey, 100+j, calibrationKey, false, true));
 | 
						|
        catch
 | 
						|
            cheirality_exception_count = cheirality_exception_count + 1;
 | 
						|
        end % end try/catch
 | 
						|
    end  
 | 
						|
    
 | 
						|
    if i > 1
 | 
						|
        disp('ISAM Update');
 | 
						|
        isam.update(fg, initial);
 | 
						|
        result = isam.calculateEstimate();
 | 
						|
        
 | 
						|
        %% reset 
 | 
						|
        initial = Values;
 | 
						|
        fg = NonlinearFactorGraph;
 | 
						|
        
 | 
						|
        currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
 | 
						|
        currentBias = isam.calculateEstimate(currentBiasKey);
 | 
						|
        
 | 
						|
        %% Compute some marginals
 | 
						|
        marginal = isam.marginalCovariance(calibrationKey);
 | 
						|
        marginal_fx(i)=sqrt(marginal(1,1));
 | 
						|
        marginal_fy(i)=sqrt(marginal(2,2));
 | 
						|
        
 | 
						|
        %% Compute condition number 
 | 
						|
        isam_fg = isam.getFactorsUnsafe();
 | 
						|
        isam_values = isam.getLinearizationPoint();
 | 
						|
        gfg = isam_fg.linearize(isam_values);
 | 
						|
        mat = gfg.jacobian();
 | 
						|
        c(i) = cond(mat, 2);
 | 
						|
        mat = gfg.augmentedJacobian();
 | 
						|
        augmented_c(i)= cond(mat, 2);
 | 
						|
        
 | 
						|
        for f=0:isam_fg.size()-1
 | 
						|
           nonlinear_factor = isam_fg.at(f);
 | 
						|
           if strcmp(class(nonlinear_factor),'gtsam.TransformCalProjectionFactorCal3_S2')
 | 
						|
               gaussian_factor = nonlinear_factor.linearize(isam_values);
 | 
						|
               A = gaussian_factor.getA();
 | 
						|
               b = gaussian_factor.getb();
 | 
						|
               % Column 17 (fy) in jacobian
 | 
						|
               A_col = A(:,17);  
 | 
						|
               if A_col(2) == 0
 | 
						|
%                    pause
 | 
						|
                   disp('Cheirality Exception!');
 | 
						|
               end
 | 
						|
           end
 | 
						|
        end
 | 
						|
        
 | 
						|
    end
 | 
						|
     
 | 
						|
    hold off;
 | 
						|
 | 
						|
    clf;
 | 
						|
    figure(1);
 | 
						|
    subplot(5,1,1:2);
 | 
						|
    hold on;
 | 
						|
    
 | 
						|
    %% plot the integrated IMU frame (not from 
 | 
						|
    gtsam.plotPose3(currentIMUPoseGlobal, [], 2);
 | 
						|
    
 | 
						|
    %% plot results
 | 
						|
    result_camera_transform = result.at(transformKey);
 | 
						|
    for j=1:i
 | 
						|
      gtsam.plotPose3(result.at(j),[],0.5);
 | 
						|
      gtsam.plotPose3(result.at(j).compose(result_camera_transform),[],0.5);
 | 
						|
    end
 | 
						|
    
 | 
						|
    xlabel('x (m)');
 | 
						|
    ylabel('y (m)');
 | 
						|
 | 
						|
    title(sprintf('Curvature %g deg, iteration %g', curvature, i));
 | 
						|
    
 | 
						|
    axis([0 20 0 20 -10 10]);
 | 
						|
      view(-37,40);
 | 
						|
%     axis equal
 | 
						|
    
 | 
						|
    for l=101:100+nrPoints
 | 
						|
        plotPoint3(result.at(l),'g');
 | 
						|
    end
 | 
						|
    
 | 
						|
    ty = result.at(transformKey).translation().y();
 | 
						|
    fx = result.at(calibrationKey).fx();
 | 
						|
    fy = result.at(calibrationKey).fy();
 | 
						|
    px = result.at(calibrationKey).px();
 | 
						|
    py = result.at(calibrationKey).py();
 | 
						|
    text(1,5,5,sprintf('Y-Transform(0.0): %0.2f',ty));
 | 
						|
    text(1,5,3,sprintf('fx(900): %.0f',fx));
 | 
						|
    text(1,5,1,sprintf('fy(900): %.0f',fy));
 | 
						|
    
 | 
						|
    fxs(i) = fx;
 | 
						|
    fys(i) = fy;
 | 
						|
    pxs(i) = px;
 | 
						|
    pys(i) = py;
 | 
						|
    subplot(5,1,3);
 | 
						|
    hold on;
 | 
						|
    plot(1:steps,repmat(K.fx,1,steps),'r--');
 | 
						|
    p(1) = plot(1:i,fxs,'r','LineWidth',2);
 | 
						|
        
 | 
						|
    plot(1:steps,repmat(K.fy,1,steps),'g--');
 | 
						|
    p(2) = plot(1:i,fys,'g','LineWidth',2);
 | 
						|
        
 | 
						|
    if i > 1
 | 
						|
        plot(2:i,fxs(2:i) + marginal_fx(2:i),'r-.');
 | 
						|
        plot(2:i,fxs(2:i) - marginal_fx(2:i),'r-.');
 | 
						|
        
 | 
						|
        plot(2:i,fys(2:i) + marginal_fy(2:i),'g-.');
 | 
						|
        plot(2:i,fys(2:i) - marginal_fy(2:i),'g-.');
 | 
						|
        
 | 
						|
        
 | 
						|
        
 | 
						|
        subplot(5,1,5);
 | 
						|
        hold on;
 | 
						|
        title('Condition Number');
 | 
						|
        plot(2:i,c(2:i),'b-');
 | 
						|
        plot(2:i,augmented_c(2:i),'r-');
 | 
						|
        axis([0 steps 0 max(c(2:i))*1.1]);
 | 
						|
        
 | 
						|
        
 | 
						|
%         figure(2);
 | 
						|
%         plotBayesTree(isam);
 | 
						|
        
 | 
						|
    end
 | 
						|
    legend(p, 'f_x', 'f_y', 'Location', 'SouthWest'); 
 | 
						|
    
 | 
						|
%     legend(p, 'f_x', 'f_x''', 'f_y', 'f_y''', 'Location', 'SouthWest'); 
 | 
						|
    
 | 
						|
    %% plot principal points
 | 
						|
    subplot(5,1,4);
 | 
						|
    hold on;
 | 
						|
    plot(1:steps,repmat(K.px,1,steps),'r--');
 | 
						|
    pp(1) = plot(1:i,pxs,'r','LineWidth',2);
 | 
						|
        
 | 
						|
    plot(1:steps,repmat(K.py,1,steps),'g--');
 | 
						|
    pp(2) = plot(1:i,pys,'g','LineWidth',2);
 | 
						|
    title('Principal Point');
 | 
						|
    legend(pp, 'p_x', 'p_y', 'Location', 'SouthWest'); 
 | 
						|
    
 | 
						|
    if(write_video)
 | 
						|
        currFrame = getframe(gcf);
 | 
						|
        writeVideo(videoObj, currFrame)
 | 
						|
    else
 | 
						|
        pause(0.1);
 | 
						|
    end
 | 
						|
    
 | 
						|
    
 | 
						|
end
 | 
						|
 | 
						|
if(write_video)
 | 
						|
    close(videoObj);
 | 
						|
end
 | 
						|
 | 
						|
fprintf('Cheirality Exception count: %d\n', cheirality_exception_count);
 | 
						|
 | 
						|
disp('Transform after optimization');
 | 
						|
result.at(transformKey)
 | 
						|
 | 
						|
disp('Calibration after optimization');
 | 
						|
result.at(calibrationKey)
 | 
						|
 | 
						|
disp('Bias after optimization');
 | 
						|
currentBias
 | 
						|
 | 
						|
 | 
						|
 |