69 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Matlab
		
	
	
| %-----------------------------------------------------------------------
 | |
| % equals
 | |
| fg = createGaussianFactorGraph();
 | |
| fg2 = createGaussianFactorGraph();
 | |
| CHECK('equals',fg.equals(fg2,1e-9));
 | |
| 
 | |
| %-----------------------------------------------------------------------
 | |
| % error
 | |
| zero = createZeroDelta();
 | |
| actual = fg.error(zero);
 | |
| DOUBLES_EQUAL( 5.625, actual, 1e-9 );
 | |
| 
 | |
| %-----------------------------------------------------------------------
 | |
| % eliminate_x1
 | |
| fg = createGaussianFactorGraph();
 | |
| actual = fg.eliminateOne('x1');
 | |
| 
 | |
| %-----------------------------------------------------------------------
 | |
| % eliminate_x2
 | |
| fg = createGaussianFactorGraph();
 | |
| actual = fg.eliminateOne('x2');
 | |
| 
 | |
| %-----------------------------------------------------------------------
 | |
| % eliminateAll
 | |
| sigma1=[.1;.1];
 | |
| I = eye(2);
 | |
| R1 = I;
 | |
| d1=[-.1;-.1];
 | |
| cg1 = GaussianConditional('x1',d1, R1,sigma1);
 | |
| 
 | |
| sigma2=[0.149071; 0.149071];
 | |
| R2 = I;
 | |
| A1= -I;
 | |
| d2=[0; .2];
 | |
| cg2 = GaussianConditional('l1',d2, R2, 'x1', A1,sigma2);
 | |
| 
 | |
| sigma3=[0.0894427; 0.0894427];
 | |
| R3 = I;
 | |
| A21 = -0.2*I;
 | |
| A22 = -0.8*I;
 | |
| d3 =[.2; -.14];
 | |
| cg3 = GaussianConditional('x2',d3, R3, 'l1', A21, 'x1', A22, sigma3);
 | |
| 
 | |
| expected = GaussianBayesNet;
 | |
| expected.push_back(cg3);
 | |
| expected.push_back(cg2);
 | |
| expected.push_back(cg1);
 | |
| 
 | |
| % Check one ordering
 | |
| fg1 = createGaussianFactorGraph();
 | |
| ord1 = Ordering;
 | |
| ord1.push_back('x2');
 | |
| ord1.push_back('l1');
 | |
| ord1.push_back('x1');
 | |
| actual1 = fg1.eliminate_(ord1);
 | |
| CHECK('eliminateAll', actual1.equals(expected,1e-5));
 | |
| 
 | |
| %-----------------------------------------------------------------------
 | |
| % matrix
 | |
| 
 | |
| fg = createGaussianFactorGraph();
 | |
| ord = Ordering;
 | |
| ord.push_back('x1');
 | |
| ord.push_back('x2');
 | |
| ord.push_back('l1');
 | |
| 
 | |
| [H,z] = fg.matrix(ord);
 | |
| 
 |