97 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    SelfCalibrationExample.cpp
 | |
|  * @brief   Based on VisualSLAMExample, but with unknown (yet fixed) calibration.
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * See the detailed documentation in Visual SLAM.
 | |
|  * The only documentation below with deal with the self-calibration.
 | |
|  */
 | |
| 
 | |
| // For loading the data
 | |
| #include "SFMdata.h"
 | |
| 
 | |
| // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| 
 | |
| // Inference and optimization
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/DoglegOptimizer.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| 
 | |
| // SFM-specific factors
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/GeneralSFMFactor.h> // does calibration !
 | |
| 
 | |
| // Standard headers
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
| 
 | |
|   // Create the set of ground-truth
 | |
|   vector<Point3> points = createPoints();
 | |
|   vector<Pose3> poses = createPoses();
 | |
| 
 | |
|   // Create the factor graph
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // Add a prior on pose x1.
 | |
|   noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | |
|   graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
 | |
| 
 | |
|   // Simulated measurements from each camera pose, adding them to the factor graph
 | |
|   Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
 | |
|   noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
 | |
|   for (size_t i = 0; i < poses.size(); ++i) {
 | |
|     for (size_t j = 0; j < points.size(); ++j) {
 | |
|       SimpleCamera camera(poses[i], K);
 | |
|       Point2 measurement = camera.project(points[j]);
 | |
|       // The only real difference with the Visual SLAM example is that here we use a
 | |
|       // different factor type, that also calculates the Jacobian with respect to calibration
 | |
|       graph.push_back(GeneralSFMFactor2<Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0)));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add a prior on the position of the first landmark.
 | |
|   noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
 | |
|   graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
 | |
| 
 | |
|   // Add a prior on the calibration.
 | |
|   noiseModel::Diagonal::shared_ptr calNoise = noiseModel::Diagonal::Sigmas((Vector(5) << 500, 500, 0.1, 100, 100).finished());
 | |
|   graph.push_back(PriorFactor<Cal3_S2>(Symbol('K', 0), K, calNoise));
 | |
| 
 | |
|   // Create the initial estimate to the solution
 | |
|   // now including an estimate on the camera calibration parameters
 | |
|   Values initialEstimate;
 | |
|   initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0));
 | |
|   for (size_t i = 0; i < poses.size(); ++i)
 | |
|     initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
 | |
|   for (size_t j = 0; j < points.size(); ++j)
 | |
|     initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
 | |
| 
 | |
|   /* Optimize the graph and print results */
 | |
|   Values result = DoglegOptimizer(graph, initialEstimate).optimize();
 | |
|   result.print("Final results:\n");
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |