122 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			122 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    SFMExampleExpressions_bal.cpp
 | |
|  * @brief   A structure-from-motion example done with Expressions
 | |
|  * @author  Frank Dellaert
 | |
|  * @date    January 2015
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * This is the Expression version of SFMExample
 | |
|  * See detailed description of headers there, this focuses on explaining the AD part
 | |
|  */
 | |
| 
 | |
| // The two new headers that allow using our Automatic Differentiation Expression framework
 | |
| #include <gtsam/slam/expressions.h>
 | |
| #include <gtsam/nonlinear/ExpressionFactorGraph.h>
 | |
| 
 | |
| // Header order is close to far
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/slam/dataset.h> // for loading BAL datasets !
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace noiseModel;
 | |
| using symbol_shorthand::C;
 | |
| using symbol_shorthand::P;
 | |
| 
 | |
| // An SfM_Camera is defined in datase.h as a camera with unknown Cal3Bundler calibration
 | |
| // and has a total of 9 free parameters
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
| 
 | |
|   // Find default file, but if an argument is given, try loading a file
 | |
|   string filename = findExampleDataFile("dubrovnik-3-7-pre");
 | |
|   if (argc > 1)
 | |
|     filename = string(argv[1]);
 | |
| 
 | |
|   // Load the SfM data from file
 | |
|   SfM_data mydata;
 | |
|   readBAL(filename, mydata);
 | |
|   cout
 | |
|       << boost::format("read %1% tracks on %2% cameras\n")
 | |
|           % mydata.number_tracks() % mydata.number_cameras();
 | |
| 
 | |
|   // Create a factor graph
 | |
|   ExpressionFactorGraph graph;
 | |
| 
 | |
|   // Here we don't use a PriorFactor but directly the ExpressionFactor class
 | |
|   // First, we create an expression to the pose from the first camera
 | |
|   Expression<SfM_Camera> camera0_(C(0));
 | |
|   // Then, to get its pose:
 | |
|   Pose3_ pose0_(&SfM_Camera::getPose, camera0_);
 | |
|   // Finally, we say it should be equal to first guess
 | |
|   graph.addExpressionFactor(pose0_, mydata.cameras[0].pose(),
 | |
|       noiseModel::Isotropic::Sigma(6, 0.1));
 | |
| 
 | |
|   // similarly, we create a prior on the first point
 | |
|   Point3_ point0_(P(0));
 | |
|   graph.addExpressionFactor(point0_, mydata.tracks[0].p,
 | |
|       noiseModel::Isotropic::Sigma(3, 0.1));
 | |
| 
 | |
|   // We share *one* noiseModel between all projection factors
 | |
|   noiseModel::Isotropic::shared_ptr noise = noiseModel::Isotropic::Sigma(2,
 | |
|       1.0); // one pixel in u and v
 | |
| 
 | |
|   // Simulated measurements from each camera pose, adding them to the factor graph
 | |
|   size_t j = 0;
 | |
|   BOOST_FOREACH(const SfM_Track& track, mydata.tracks) {
 | |
|     // Leaf expression for j^th point
 | |
|     Point3_ point_('p', j);
 | |
|     BOOST_FOREACH(const SfM_Measurement& m, track.measurements) {
 | |
|       size_t i = m.first;
 | |
|       Point2 uv = m.second;
 | |
|       // Leaf expression for i^th camera
 | |
|       Expression<SfM_Camera> camera_(C(i));
 | |
|       // Below an expression for the prediction of the measurement:
 | |
|       Point2_ predict_ = project2<SfM_Camera>(camera_, point_);
 | |
|       // Again, here we use an ExpressionFactor
 | |
|       graph.addExpressionFactor(predict_, uv, noise);
 | |
|     }
 | |
|     j += 1;
 | |
|   }
 | |
| 
 | |
|   // Create initial estimate
 | |
|   Values initial;
 | |
|   size_t i = 0;
 | |
|   j = 0;
 | |
|   BOOST_FOREACH(const SfM_Camera& camera, mydata.cameras)
 | |
|     initial.insert(C(i++), camera);
 | |
|   BOOST_FOREACH(const SfM_Track& track, mydata.tracks)
 | |
|     initial.insert(P(j++), track.p);
 | |
| 
 | |
|   /* Optimize the graph and print results */
 | |
|   Values result;
 | |
|   try {
 | |
|     LevenbergMarquardtParams params;
 | |
|     params.setVerbosity("ERROR");
 | |
|     LevenbergMarquardtOptimizer lm(graph, initial, params);
 | |
|     result = lm.optimize();
 | |
|   } catch (exception& e) {
 | |
|     cout << e.what();
 | |
|   }
 | |
|   cout << "final error: " << graph.error(result) << endl;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |