143 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file PlanarSLAMExample.cpp
 | |
|  * @brief Simple robotics example using odometry measurements and bearing-range (laser) measurements
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * A simple 2D planar slam example with landmarks
 | |
|  *  - The robot and landmarks are on a 2 meter grid
 | |
|  *  - Robot poses are facing along the X axis (horizontal, to the right in 2D)
 | |
|  *  - The robot moves 2 meters each step
 | |
|  *  - We have full odometry between poses
 | |
|  *  - We have bearing and range information for measurements
 | |
|  *  - Landmarks are 2 meters away from the robot trajectory
 | |
|  */
 | |
| 
 | |
| // As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
 | |
| // the robot positions and Point2 variables (x, y) to represent the landmark coordinates.
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| 
 | |
| // Each variable in the system (poses and landmarks) must be identified with a unique key.
 | |
| // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | |
| // Here we will use Symbols
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| // In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | |
| // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
 | |
| // Here we will use a RangeBearing factor for the range-bearing measurements to identified
 | |
| // landmarks, and Between factors for the relative motion described by odometry measurements.
 | |
| // Also, we will initialize the robot at the origin using a Prior factor.
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/BearingRangeFactor.h>
 | |
| 
 | |
| // When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | |
| // are nonlinear factors, we will need a Nonlinear Factor Graph.
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| 
 | |
| // Finally, once all of the factors have been added to our factor graph, we will want to
 | |
| // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | |
| // GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
 | |
| // common Levenberg-Marquardt solver
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| 
 | |
| // Once the optimized values have been calculated, we can also calculate the marginal covariance
 | |
| // of desired variables
 | |
| #include <gtsam/nonlinear/Marginals.h>
 | |
| 
 | |
| // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | |
| // nonlinear functions around an initial linearization point, then solve the linear system
 | |
| // to update the linearization point. This happens repeatedly until the solver converges
 | |
| // to a consistent set of variable values. This requires us to specify an initial guess
 | |
| // for each variable, held in a Values container.
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| 
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| int main(int argc, char** argv) {
 | |
| 
 | |
|   // Create a factor graph
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // Create the keys we need for this simple example
 | |
|   static Symbol x1('x',1), x2('x',2), x3('x',3);
 | |
|   static Symbol l1('l',1), l2('l',2);
 | |
| 
 | |
|   // Add a prior on pose x1 at the origin. A prior factor consists of a mean and a noise model (covariance matrix)
 | |
|   Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
 | |
|   noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
 | |
|   graph.add(PriorFactor<Pose2>(x1, prior, priorNoise)); // add directly to graph
 | |
| 
 | |
|   // Add two odometry factors
 | |
|   Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | |
|   noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
 | |
|   graph.add(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
 | |
|   graph.add(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
 | |
| 
 | |
|   // Add Range-Bearing measurements to two different landmarks
 | |
|   // create a noise model for the landmark measurements
 | |
|   noiseModel::Diagonal::shared_ptr measurementNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range
 | |
|   // create the measurement values - indices are (pose id, landmark id)
 | |
|   Rot2 bearing11 = Rot2::fromDegrees(45),
 | |
|        bearing21 = Rot2::fromDegrees(90),
 | |
|        bearing32 = Rot2::fromDegrees(90);
 | |
|   double range11 = std::sqrt(4.0+4.0),
 | |
|          range21 = 2.0,
 | |
|          range32 = 2.0;
 | |
| 
 | |
|   // Add Bearing-Range factors
 | |
|   graph.add(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
 | |
|   graph.add(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
 | |
|   graph.add(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
 | |
| 
 | |
|   // Print
 | |
|   graph.print("Factor Graph:\n");
 | |
| 
 | |
|   // Create (deliberately inaccurate) initial estimate
 | |
|   Values initialEstimate;
 | |
|   initialEstimate.insert(x1, Pose2(0.5, 0.0, 0.2));
 | |
|   initialEstimate.insert(x2, Pose2(2.3, 0.1,-0.2));
 | |
|   initialEstimate.insert(x3, Pose2(4.1, 0.1, 0.1));
 | |
|   initialEstimate.insert(l1, Point2(1.8, 2.1));
 | |
|   initialEstimate.insert(l2, Point2(4.1, 1.8));
 | |
| 
 | |
|   // Print
 | |
|   initialEstimate.print("Initial Estimate:\n");
 | |
| 
 | |
|   // Optimize using Levenberg-Marquardt optimization. The optimizer
 | |
|   // accepts an optional set of configuration parameters, controlling
 | |
|   // things like convergence criteria, the type of linear system solver
 | |
|   // to use, and the amount of information displayed during optimization.
 | |
|   // Here we will use the default set of parameters.  See the
 | |
|   // documentation for the full set of parameters.
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
 | |
|   Values result = optimizer.optimize();
 | |
|   result.print("Final Result:\n");
 | |
| 
 | |
|   // Calculate and print marginal covariances for all variables
 | |
|   Marginals marginals(graph, result);
 | |
|   print(marginals.marginalCovariance(x1), "x1 covariance");
 | |
|   print(marginals.marginalCovariance(x2), "x2 covariance");
 | |
|   print(marginals.marginalCovariance(x3), "x3 covariance");
 | |
|   print(marginals.marginalCovariance(l1), "l1 covariance");
 | |
|   print(marginals.marginalCovariance(l2), "l2 covariance");
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 |