226 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file   testSubgraphConditioner.cpp
 | |
|  *  @brief  Unit tests for SubgraphPreconditioner
 | |
|  *  @author Frank Dellaert
 | |
|  **/
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| #include <tests/smallExample.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/linear/iterative.h>
 | |
| #include <gtsam/linear/GaussianFactorGraph.h>
 | |
| #include <gtsam/linear/SubgraphPreconditioner.h>
 | |
| #include <gtsam/inference/Ordering.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| 
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include <boost/assign/std/list.hpp>
 | |
| using namespace boost::assign;
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| // define keys
 | |
| // Create key for simulated planar graph
 | |
| Symbol key(int x, int y) {
 | |
|   return symbol_shorthand::X(1000*x+y);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphPreconditioner, planarOrdering ) {
 | |
|   // Check canonical ordering
 | |
|   Ordering expected, ordering = planarOrdering(3);
 | |
|   expected +=
 | |
|       key(3, 3), key(2, 3), key(1, 3),
 | |
|       key(3, 2), key(2, 2), key(1, 2),
 | |
|       key(3, 1), key(2, 1), key(1, 1);
 | |
|   CHECK(assert_equal(expected,ordering));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /** unnormalized error */
 | |
| static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
 | |
|   double total_error = 0.;
 | |
|   BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, fg)
 | |
|     total_error += factor->error(x);
 | |
|   return total_error;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphPreconditioner, planarGraph )
 | |
|   {
 | |
|   // Check planar graph construction
 | |
|   GaussianFactorGraph A;
 | |
|   VectorValues xtrue;
 | |
|   boost::tie(A, xtrue) = planarGraph(3);
 | |
|   LONGS_EQUAL(13,A.size());
 | |
|   LONGS_EQUAL(9,xtrue.size());
 | |
|   DOUBLES_EQUAL(0,error(A,xtrue),1e-9); // check zero error for xtrue
 | |
| 
 | |
|   // Check that xtrue is optimal
 | |
|   GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(A).eliminate();
 | |
|   VectorValues actual = optimize(*R1);
 | |
|   CHECK(assert_equal(xtrue,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphPreconditioner, splitOffPlanarTree )
 | |
| {
 | |
|   // Build a planar graph
 | |
|   GaussianFactorGraph A;
 | |
|   VectorValues xtrue;
 | |
|   boost::tie(A, xtrue) = planarGraph(3);
 | |
| 
 | |
|   // Get the spanning tree and constraints, and check their sizes
 | |
|   GaussianFactorGraph T, C;
 | |
|   boost::tie(T, C) = splitOffPlanarTree(3, A);
 | |
|   LONGS_EQUAL(9,T.size());
 | |
|   LONGS_EQUAL(4,C.size());
 | |
| 
 | |
|   // Check that the tree can be solved to give the ground xtrue
 | |
|   GaussianBayesNet::shared_ptr R1 = GaussianSequentialSolver(T).eliminate();
 | |
|   VectorValues xbar = optimize(*R1);
 | |
|   CHECK(assert_equal(xtrue,xbar));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| TEST( SubgraphPreconditioner, system )
 | |
| {
 | |
|   // Build a planar graph
 | |
|   GaussianFactorGraph Ab;
 | |
|   VectorValues xtrue;
 | |
|   size_t N = 3;
 | |
|   boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
 | |
| 
 | |
|   // Get the spanning tree and corresponding ordering
 | |
|   GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
 | |
|   boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
 | |
|   SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
 | |
|   SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
 | |
| 
 | |
|   // Eliminate the spanning tree to build a prior
 | |
|   SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
 | |
|   VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
 | |
| 
 | |
|   // Create Subgraph-preconditioned system
 | |
|   VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
 | |
|   SubgraphPreconditioner system(Ab2, Rc1, xbarShared);
 | |
| 
 | |
|   // Create zero config
 | |
|   VectorValues zeros = VectorValues::Zero(xbar);
 | |
| 
 | |
|   // Set up y0 as all zeros
 | |
|   VectorValues y0 = zeros;
 | |
| 
 | |
|   // y1 = perturbed y0
 | |
|   VectorValues y1 = zeros;
 | |
|   y1[1] = (Vec(2) << 1.0, -1.0);
 | |
| 
 | |
|   // Check corresponding x  values
 | |
|   VectorValues expected_x1 = xtrue, x1 = system.x(y1);
 | |
|   expected_x1[1] = (Vec(2) << 2.01, 2.99);
 | |
|   expected_x1[0] = (Vec(2) << 3.01, 2.99);
 | |
|   CHECK(assert_equal(xtrue, system.x(y0)));
 | |
|   CHECK(assert_equal(expected_x1,system.x(y1)));
 | |
| 
 | |
|   // Check errors
 | |
|   DOUBLES_EQUAL(0,error(Ab,xtrue),1e-9);
 | |
|   DOUBLES_EQUAL(3,error(Ab,x1),1e-9);
 | |
|   DOUBLES_EQUAL(0,error(system,y0),1e-9);
 | |
|   DOUBLES_EQUAL(3,error(system,y1),1e-9);
 | |
| 
 | |
|   // Test gradient in x
 | |
|   VectorValues expected_gx0 = zeros;
 | |
|   VectorValues expected_gx1 = zeros;
 | |
|   CHECK(assert_equal(expected_gx0,gradient(Ab,xtrue)));
 | |
|   expected_gx1[2] = (Vec(2) << -100., 100.);
 | |
|   expected_gx1[4] = (Vec(2) << -100., 100.);
 | |
|   expected_gx1[1] = (Vec(2) << 200., -200.);
 | |
|   expected_gx1[3] = (Vec(2) << -100., 100.);
 | |
|   expected_gx1[0] = (Vec(2) << 100., -100.);
 | |
|   CHECK(assert_equal(expected_gx1,gradient(Ab,x1)));
 | |
| 
 | |
|   // Test gradient in y
 | |
|   VectorValues expected_gy0 = zeros;
 | |
|   VectorValues expected_gy1 = zeros;
 | |
|   expected_gy1[2] = (Vec(2) << 2., -2.);
 | |
|   expected_gy1[4] = (Vec(2) << -2., 2.);
 | |
|   expected_gy1[1] = (Vec(2) << 3., -3.);
 | |
|   expected_gy1[3] = (Vec(2) << -1., 1.);
 | |
|   expected_gy1[0] = (Vec(2) << 1., -1.);
 | |
|   CHECK(assert_equal(expected_gy0,gradient(system,y0)));
 | |
|   CHECK(assert_equal(expected_gy1,gradient(system,y1)));
 | |
| 
 | |
|   // Check it numerically for good measure
 | |
|   // TODO use boost::bind(&SubgraphPreconditioner::error,&system,_1)
 | |
|   //  Vector numerical_g1 = numericalGradient<VectorValues> (error, y1, 0.001);
 | |
|   //  Vector expected_g1 = (Vec(18) << 0., 0., 0., 0., 2., -2., 0., 0., -2., 2.,
 | |
|   //      3., -3., 0., 0., -1., 1., 1., -1.);
 | |
|   //  CHECK(assert_equal(expected_g1,numerical_g1));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SubgraphPreconditioner, conjugateGradients )
 | |
| {
 | |
|   // Build a planar graph
 | |
|   GaussianFactorGraph Ab;
 | |
|   VectorValues xtrue;
 | |
|   size_t N = 3;
 | |
|   boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
 | |
| 
 | |
|   // Get the spanning tree and corresponding ordering
 | |
|   GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
 | |
|   boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
 | |
|   SubgraphPreconditioner::sharedFG Ab1(new GaussianFactorGraph(Ab1_));
 | |
|   SubgraphPreconditioner::sharedFG Ab2(new GaussianFactorGraph(Ab2_));
 | |
| 
 | |
|   // Eliminate the spanning tree to build a prior
 | |
|   Ordering ordering = planarOrdering(N);
 | |
|   SubgraphPreconditioner::sharedBayesNet Rc1 = GaussianSequentialSolver(Ab1_).eliminate(); // R1*x-c1
 | |
|   VectorValues xbar = optimize(*Rc1); // xbar = inv(R1)*c1
 | |
| 
 | |
|   // Create Subgraph-preconditioned system
 | |
|   VectorValues::shared_ptr xbarShared(new VectorValues(xbar)); // TODO: horrible
 | |
|   SubgraphPreconditioner system(Ab2, Rc1, xbarShared);
 | |
| 
 | |
|   // Create zero config y0 and perturbed config y1
 | |
|   VectorValues y0 = VectorValues::Zero(xbar);
 | |
| 
 | |
|   VectorValues y1 = y0;
 | |
|   y1[1] = (Vec(2) << 1.0, -1.0);
 | |
|   VectorValues x1 = system.x(y1);
 | |
| 
 | |
|   // Solve for the remaining constraints using PCG
 | |
|   ConjugateGradientParameters parameters;
 | |
|   VectorValues actual = conjugateGradients<SubgraphPreconditioner,
 | |
|       VectorValues, Errors>(system, y1, parameters);
 | |
|   CHECK(assert_equal(y0,actual));
 | |
| 
 | |
|   // Compare with non preconditioned version:
 | |
|   VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
 | |
|   CHECK(assert_equal(xtrue,actual2,1e-4));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |