487 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			487 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file   inference-inl.h
 | |
|  * @brief  inference template definitions
 | |
|  * @author Frank Dellaert, Richard Roberts
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/base/timing.h>
 | |
| #include <gtsam/inference/inference.h>
 | |
| #include <gtsam/inference/FactorGraph-inl.h>
 | |
| #include <gtsam/inference/BayesNet-inl.h>
 | |
| #include <gtsam/colamd/ccolamd.h>
 | |
| 
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/format.hpp>
 | |
| #include <boost/lambda/bind.hpp>
 | |
| #include <boost/lambda/lambda.hpp>
 | |
| #include <boost/pool/pool_alloc.hpp>
 | |
| #include <limits>
 | |
| #include <map>
 | |
| #include <stdexcept>
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template<class FactorGraph>
 | |
| inline typename FactorGraph::bayesnet_type::shared_ptr Inference::Eliminate(const FactorGraph& factorGraph) {
 | |
| 
 | |
|   // Create a copy of the factor graph to eliminate in-place
 | |
|   FactorGraph eliminationGraph(factorGraph);
 | |
|   typename FactorGraph::variableindex_type variableIndex(eliminationGraph);
 | |
| 
 | |
|   return Eliminate(eliminationGraph, variableIndex);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template<class Factor>
 | |
| BayesNet<Conditional>::shared_ptr Inference::EliminateSymbolic(const FactorGraph<Factor>& factorGraph) {
 | |
| 
 | |
|   // Create a copy of the factor graph to eliminate in-place
 | |
|   FactorGraph<gtsam::Factor> eliminationGraph(factorGraph);
 | |
|   VariableIndex<> variableIndex(eliminationGraph);
 | |
| 
 | |
|   typename BayesNet<Conditional>::shared_ptr bayesnet(new BayesNet<Conditional>());
 | |
| 
 | |
|   // Eliminate variables one-by-one, updating the eliminated factor graph and
 | |
|   // the variable index.
 | |
|   for(Index var = 0; var < variableIndex.size(); ++var) {
 | |
|     Conditional::shared_ptr conditional(EliminateOneSymbolic(eliminationGraph, variableIndex, var));
 | |
|     if(conditional) // Will be NULL if the variable did not appear in the factor graph.
 | |
|       bayesnet->push_back(conditional);
 | |
|   }
 | |
| 
 | |
|   return bayesnet;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template<class FactorGraph>
 | |
| inline typename FactorGraph::bayesnet_type::shared_ptr
 | |
| Inference::Eliminate(FactorGraph& factorGraph, typename FactorGraph::variableindex_type& variableIndex) {
 | |
| 
 | |
|   return EliminateUntil(factorGraph, variableIndex.size(), variableIndex);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template<class FactorGraph>
 | |
| inline typename FactorGraph::bayesnet_type::shared_ptr
 | |
| Inference::EliminateUntil(const FactorGraph& factorGraph, Index bound) {
 | |
| 
 | |
|   // Create a copy of the factor graph to eliminate in-place
 | |
|   FactorGraph eliminationGraph(factorGraph);
 | |
|   typename FactorGraph::variableindex_type variableIndex(eliminationGraph);
 | |
| 
 | |
|   return EliminateUntil(eliminationGraph, bound, variableIndex);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template<class FactorGraph>
 | |
| typename FactorGraph::bayesnet_type::shared_ptr
 | |
| Inference::EliminateUntil(FactorGraph& factorGraph, Index bound, typename FactorGraph::variableindex_type& variableIndex) {
 | |
| 
 | |
|   typename FactorGraph::bayesnet_type::shared_ptr bayesnet(new typename FactorGraph::bayesnet_type);
 | |
| 
 | |
|   // Eliminate variables one-by-one, updating the eliminated factor graph and
 | |
|   // the variable index.
 | |
|   for(Index var = 0; var < bound; ++var) {
 | |
|     typename FactorGraph::bayesnet_type::sharedConditional conditional(EliminateOne(factorGraph, variableIndex, var));
 | |
|     if(conditional) // Will be NULL if the variable did not appear in the factor graph.
 | |
|       bayesnet->push_back(conditional);
 | |
|   }
 | |
| 
 | |
|   return bayesnet;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template<class FactorGraph>
 | |
| typename FactorGraph::bayesnet_type::sharedConditional
 | |
| Inference::EliminateOne(FactorGraph& factorGraph, typename FactorGraph::variableindex_type& variableIndex, Index var) {
 | |
| 
 | |
|   /* This function performs symbolic elimination of a variable, comprising
 | |
|    * combining involved factors (analogous to "assembly" in SPQR) followed by
 | |
|    * eliminating to an upper-trapezoidal factor using spqr_front.  This
 | |
|    * function performs the bookkeeping necessary for high performance.
 | |
|    *
 | |
|    * When combining factors, variables are merge sorted so that they remain
 | |
|    * in elimination order in the combined factor.  GaussianFactor combines
 | |
|    * rows such that the row index after the last structural non-zero in each
 | |
|    * column increases monotonically (referred to as the "staircase" pattern in
 | |
|    * SPQR).  The variable ordering is passed into the factor's Combine(...)
 | |
|    * function, which does the work of actually building the combined factor
 | |
|    * (for a GaussianFactor this assembles the augmented matrix).
 | |
|    *
 | |
|    * Next, this function calls the factor's eliminateFirst() function, which
 | |
|    * factorizes the factor into a conditional on the first variable and a
 | |
|    * factor on the remaining variables.  In addition, this function updates the
 | |
|    * bookkeeping of the pattern of structural non-zeros.  The GaussianFactor
 | |
|    * calls spqr_front during eliminateFirst(), which reduces its matrix to
 | |
|    * upper-trapezoidal form.
 | |
|    *
 | |
|    * Returns NULL if the variable does not appear in factorGraph.
 | |
|    */
 | |
| 
 | |
|   tic("EliminateOne");
 | |
| 
 | |
|   // Get the factors involving the eliminated variable
 | |
|   typename FactorGraph::variableindex_type::mapped_type& varIndexEntry(variableIndex[var]);
 | |
|   typedef typename FactorGraph::variableindex_type::mapped_factor_type mapped_factor_type;
 | |
| 
 | |
|   if(!varIndexEntry.empty()) {
 | |
| 
 | |
|     vector<size_t> removedFactors(varIndexEntry.size());
 | |
|     transform(varIndexEntry.begin(), varIndexEntry.end(), removedFactors.begin(),
 | |
|         boost::lambda::bind(&FactorGraph::variableindex_type::mapped_factor_type::factorIndex, boost::lambda::_1));
 | |
| 
 | |
|     // The new joint factor will be the last one in the factor graph
 | |
|     size_t jointFactorIndex = factorGraph.size();
 | |
| 
 | |
|     static const bool debug = false;
 | |
| 
 | |
|     if(debug) {
 | |
|       cout << "Eliminating " << var;
 | |
|       factorGraph.print(" from graph: ");
 | |
|       cout << removedFactors.size() << " factors to remove" << endl;
 | |
|     }
 | |
| 
 | |
|     // Compute the involved keys, uses the variableIndex to mark whether each
 | |
|     // key has been added yet, but the positions stored in the variableIndex are
 | |
|     // from the unsorted positions and will be fixed later.
 | |
|     tic("EliminateOne: Find involved vars");
 | |
|     map<Index, size_t, std::less<Index>, boost::fast_pool_allocator<pair<const Index,size_t> > > involvedKeys; // Variable and original order as discovered
 | |
|     BOOST_FOREACH(size_t removedFactorI, removedFactors) {
 | |
|       if(debug) cout << removedFactorI << " is involved" << endl;
 | |
|       // If the factor has not previously been removed
 | |
|       if(removedFactorI < factorGraph.size() && factorGraph[removedFactorI]) {
 | |
|         // Loop over the variables involved in the removed factor to update the
 | |
|         // variable index and joint factor positions of each variable.
 | |
|         BOOST_FOREACH(Index involvedVariable, factorGraph[removedFactorI]->keys()) {
 | |
|           // Mark the new joint factor as involving each variable in the removed factor.
 | |
|           assert(!variableIndex[involvedVariable].empty());
 | |
|           if(variableIndex[involvedVariable].back().factorIndex != jointFactorIndex) {
 | |
|             if(debug) cout << "  pulls in variable " << involvedVariable << endl;
 | |
|             size_t varpos = involvedKeys.size();
 | |
|             variableIndex[involvedVariable].push_back(mapped_factor_type(jointFactorIndex, varpos));
 | |
| #ifndef NDEBUG
 | |
|             bool inserted =
 | |
| #endif
 | |
|                 involvedKeys.insert(make_pair(involvedVariable, varpos)).second;
 | |
|             assert(inserted);
 | |
|           } else if(debug)
 | |
|             cout << "  involves variable " << involvedVariable << " which was previously discovered" << endl;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     toc("EliminateOne: Find involved vars");
 | |
|     if(debug) cout << removedFactors.size() << " factors to remove" << endl;
 | |
| 
 | |
|     // Compute the permutation to go from the original varpos to the sorted
 | |
|     // joint factor varpos
 | |
|     if(debug) cout << "Sorted keys:";
 | |
|     tic("EliminateOne: Sort involved vars");
 | |
|     vector<size_t> varposPermutation(involvedKeys.size(), numeric_limits<size_t>::max());
 | |
|     vector<Index> sortedKeys(involvedKeys.size());
 | |
|     {
 | |
|       size_t sortedVarpos = 0;
 | |
|       const map<Index, size_t, std::less<Index>, boost::fast_pool_allocator<pair<const Index,size_t> > >& involvedKeysC(involvedKeys);
 | |
|       for(map<Index, size_t, std::less<Index>, boost::fast_pool_allocator<pair<const Index,size_t> > >::const_iterator key_pos=involvedKeysC.begin(); key_pos!=involvedKeysC.end(); ++key_pos) {
 | |
|         sortedKeys[sortedVarpos] = key_pos->first;
 | |
|         assert(varposPermutation[key_pos->second] == numeric_limits<size_t>::max());
 | |
|         varposPermutation[key_pos->second] = sortedVarpos;
 | |
|         if(debug) cout << " " << key_pos->first << " (" << key_pos->second << "->" << sortedVarpos << ")  ";
 | |
|         ++ sortedVarpos;
 | |
|       }
 | |
|     }
 | |
|     toc("EliminateOne: Sort involved vars");
 | |
|     if(debug) cout << endl;
 | |
| 
 | |
|     assert(sortedKeys.front() == var);
 | |
|     if(debug) cout << removedFactors.size() << " factors to remove" << endl;
 | |
| 
 | |
|     // Fix the variable positions in the variableIndex
 | |
|     tic("EliminateOne: Fix varIndex");
 | |
|     for(size_t sortedPos=0; sortedPos<sortedKeys.size(); ++sortedPos) {
 | |
|       Index var = sortedKeys[sortedPos];
 | |
|       assert(!variableIndex[var].empty());
 | |
|       assert(variableIndex[var].back().factorIndex == jointFactorIndex);
 | |
|       assert(sortedPos == varposPermutation[variableIndex[var].back().variablePosition]);
 | |
|       if(debug) cout << "Fixing " << var << "  " << variableIndex[var].back().variablePosition << "->" << sortedPos << endl;
 | |
|       variableIndex[var].back().variablePosition = sortedPos;
 | |
|     }
 | |
|     toc("EliminateOne: Fix varIndex");
 | |
| 
 | |
|     // Fill in the jointFactorPositions
 | |
|     tic("EliminateOne: Fill jointFactorPositions");
 | |
|     vector<size_t> removedFactorIdxs;
 | |
|     removedFactorIdxs.reserve(removedFactors.size());
 | |
|     vector<vector<size_t> > jointFactorPositions;
 | |
|     jointFactorPositions.reserve(removedFactors.size());
 | |
|     if(debug) cout << removedFactors.size() << " factors to remove" << endl;
 | |
|     BOOST_FOREACH(size_t removedFactorI, removedFactors) {
 | |
|       if(debug) cout << "Fixing variable positions for factor " << removedFactorI << endl;
 | |
|       // If the factor has not previously been removed
 | |
|       if(removedFactorI < factorGraph.size() && factorGraph[removedFactorI]) {
 | |
| 
 | |
|         // Allocate space
 | |
|         jointFactorPositions.push_back(vector<size_t>());
 | |
|         vector<size_t>& jointFactorPositionsCur(jointFactorPositions.back());
 | |
|         jointFactorPositionsCur.reserve(factorGraph[removedFactorI]->keys().size());
 | |
|         removedFactorIdxs.push_back(removedFactorI);
 | |
| 
 | |
|         // Loop over the variables involved in the removed factor to update the
 | |
|         // variable index and joint factor positions of each variable.
 | |
|         BOOST_FOREACH(Index involvedVariable, factorGraph[removedFactorI]->keys()) {
 | |
|           // Mark the new joint factor as involving each variable in the removed factor
 | |
|           assert(!variableIndex[involvedVariable].empty());
 | |
|           assert(variableIndex[involvedVariable].back().factorIndex == jointFactorIndex);
 | |
|           const size_t varpos = variableIndex[involvedVariable].back().variablePosition;
 | |
|           jointFactorPositionsCur.push_back(varpos);
 | |
|           if(debug) cout << "Variable " << involvedVariable << " from factor " << removedFactorI;
 | |
|           if(debug) cout << " goes in position " << varpos << " of the joint factor" << endl;
 | |
|           assert(sortedKeys[varpos] == involvedVariable);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     toc("EliminateOne: Fill jointFactorPositions");
 | |
| 
 | |
|     // Join the factors and eliminate the variable from the joint factor
 | |
|     tic("EliminateOne: Combine");
 | |
|     typename FactorGraph::sharedFactor jointFactor(FactorGraph::factor_type::Combine(factorGraph, variableIndex, removedFactorIdxs, sortedKeys, jointFactorPositions));
 | |
|     toc("EliminateOne: Combine");
 | |
| 
 | |
|     // Remove the original factors
 | |
|     BOOST_FOREACH(size_t removedFactorI, removedFactors) {
 | |
|       if(removedFactorI < factorGraph.size() && factorGraph[removedFactorI])
 | |
|         factorGraph.remove(removedFactorI);
 | |
|     }
 | |
| 
 | |
|     typename FactorGraph::bayesnet_type::sharedConditional conditional;
 | |
|     tic("EliminateOne: eliminateFirst");
 | |
|     conditional = jointFactor->eliminateFirst();   // Eliminate the first variable in-place
 | |
|     toc("EliminateOne: eliminateFirst");
 | |
|     tic("EliminateOne: store eliminated");
 | |
|     variableIndex[sortedKeys.front()].pop_back();  // Unmark the joint factor from involving the eliminated variable
 | |
|     factorGraph.push_back(jointFactor);  // Put the eliminated factor into the factor graph
 | |
|     toc("EliminateOne: store eliminated");
 | |
| 
 | |
|     toc("EliminateOne");
 | |
| 
 | |
|     return conditional;
 | |
| 
 | |
|   } else { // varIndexEntry.empty()
 | |
|     toc("EliminateOne");
 | |
|     return typename FactorGraph::bayesnet_type::sharedConditional();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template<class FactorGraph, class VarContainer>
 | |
| FactorGraph Inference::Marginal(const FactorGraph& factorGraph, const VarContainer& variables) {
 | |
| 
 | |
|   // Compute a COLAMD permutation with the marginal variables constrained to the end
 | |
|   typename FactorGraph::variableindex_type varIndex(factorGraph);
 | |
|   Permutation::shared_ptr permutation(Inference::PermutationCOLAMD(varIndex, variables));
 | |
|   Permutation::shared_ptr permutationInverse(permutation->inverse());
 | |
| 
 | |
|   // Copy and permute the factors
 | |
|   varIndex.permute(*permutation);
 | |
|   FactorGraph eliminationGraph; eliminationGraph.reserve(factorGraph.size());
 | |
|   BOOST_FOREACH(const typename FactorGraph::sharedFactor& factor, factorGraph) {
 | |
|     typename FactorGraph::sharedFactor permFactor(new typename FactorGraph::factor_type(*factor));
 | |
|     permFactor->permuteWithInverse(*permutationInverse);
 | |
|     eliminationGraph.push_back(permFactor);
 | |
|   }
 | |
| 
 | |
|   // Eliminate all variables
 | |
|   typename FactorGraph::bayesnet_type::shared_ptr bn(Inference::Eliminate(eliminationGraph, varIndex));
 | |
| 
 | |
|   // The last conditionals in the eliminated BayesNet contain the marginal for
 | |
|   // the variables we want.  Undo the permutation as we add the marginal
 | |
|   // factors.
 | |
|   FactorGraph marginal; marginal.reserve(variables.size());
 | |
|   typename FactorGraph::bayesnet_type::const_reverse_iterator conditional = bn->rbegin();
 | |
|   for(Index j=0; j<variables.size(); ++j, ++conditional) {
 | |
|     typename FactorGraph::sharedFactor factor(new typename FactorGraph::factor_type(**conditional));
 | |
|     factor->permuteWithInverse(*permutation);
 | |
|     marginal.push_back(factor);
 | |
|     assert(std::find(variables.begin(), variables.end(), (*permutation)[(*conditional)->key()]) != variables.end());
 | |
|   }
 | |
| 
 | |
|   // Undo the permutation
 | |
|   return marginal;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template<class VariableIndexType, typename ConstraintContainer>
 | |
| Permutation::shared_ptr Inference::PermutationCOLAMD(const VariableIndexType& variableIndex, const ConstraintContainer& constrainLast) {
 | |
|   size_t nEntries = variableIndex.nEntries(), nFactors = variableIndex.nFactors(), nVars = variableIndex.size();
 | |
|   // Convert to compressed column major format colamd wants it in (== MATLAB format!)
 | |
|   int Alen = ccolamd_recommended(nEntries, nFactors, nVars); /* colamd arg 3: size of the array A */
 | |
|   int * A = new int[Alen]; /* colamd arg 4: row indices of A, of size Alen */
 | |
|   int * p = new int[nVars + 1]; /* colamd arg 5: column pointers of A, of size n_col+1 */
 | |
|   int * cmember = new int[nVars]; /* Constraint set of A, of size n_col */
 | |
| 
 | |
|   static const bool debug = false;
 | |
| 
 | |
|   p[0] = 0;
 | |
|   int count = 0;
 | |
|   for(Index var = 0; var < variableIndex.size(); ++var) {
 | |
|     const typename VariableIndexType::mapped_type& column(variableIndex[var]);
 | |
|     size_t lastFactorId = numeric_limits<size_t>::max();
 | |
|     BOOST_FOREACH(const typename VariableIndexType::mapped_factor_type& factor_pos, column) {
 | |
|       if(lastFactorId != numeric_limits<size_t>::max())
 | |
|         assert(factor_pos.factorIndex > lastFactorId);
 | |
|       A[count++] = factor_pos.factorIndex; // copy sparse column
 | |
|       if(debug) cout << "A[" << count-1 << "] = " << factor_pos.factorIndex << endl;
 | |
|     }
 | |
|     p[var+1] = count; // column j (base 1) goes from A[j-1] to A[j]-1
 | |
|     cmember[var] = 0;
 | |
|   }
 | |
| 
 | |
|   // If at least some variables are not constrained to be last, constrain the
 | |
|   // ones that should be constrained.
 | |
|   if(constrainLast.size() < variableIndex.size()) {
 | |
|     BOOST_FOREACH(Index var, constrainLast) {
 | |
|       assert(var < nVars);
 | |
|       cmember[var] = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert((size_t)count == variableIndex.nEntries());
 | |
| 
 | |
|   if(debug)
 | |
|     for(size_t i=0; i<nVars+1; ++i)
 | |
|       cout << "p[" << i << "] = " << p[i] << endl;
 | |
| 
 | |
|   double* knobs = NULL; /* colamd arg 6: parameters (uses defaults if NULL) */
 | |
|   int stats[CCOLAMD_STATS]; /* colamd arg 7: colamd output statistics and error codes */
 | |
| 
 | |
|   // call colamd, result will be in p
 | |
|   /* returns (1) if successful, (0) otherwise*/
 | |
|   int rv = ccolamd(nFactors, nVars, Alen, A, p, knobs, stats, cmember);
 | |
|   if(rv != 1)
 | |
|     throw runtime_error((boost::format("ccolamd failed with return value %1%")%rv).str());
 | |
|   delete[] A; // delete symbolic A
 | |
|   delete[] cmember;
 | |
| 
 | |
|   // Convert elimination ordering in p to an ordering
 | |
|   Permutation::shared_ptr permutation(new Permutation(nVars));
 | |
|   for (Index j = 0; j < nVars; j++) {
 | |
|     permutation->operator[](j) = p[j];
 | |
|     if(debug) cout << "COLAMD:  " << j << "->" << p[j] << endl;
 | |
|   }
 | |
|   if(debug) cout << "COLAMD:  p[" << nVars << "] = " << p[nVars] << endl;
 | |
|   delete[] p; // delete colamd result vector
 | |
| 
 | |
|   return permutation;
 | |
| }
 | |
| 
 | |
| 
 | |
| //	/* ************************************************************************* */
 | |
| //	/* eliminate one node from the factor graph                           */
 | |
| //	/* ************************************************************************* */
 | |
| //	template<class Factor,class Conditional>
 | |
| //	boost::shared_ptr<Conditional> eliminateOne(FactorGraph<Factor>& graph, Index key) {
 | |
| //
 | |
| //		// combine the factors of all nodes connected to the variable to be eliminated
 | |
| //		// if no factors are connected to key, returns an empty factor
 | |
| //		boost::shared_ptr<Factor> joint_factor = removeAndCombineFactors(graph,key);
 | |
| //
 | |
| //		// eliminate that joint factor
 | |
| //		boost::shared_ptr<Factor> factor;
 | |
| //		boost::shared_ptr<Conditional> conditional;
 | |
| //		boost::tie(conditional, factor) = joint_factor->eliminate(key);
 | |
| //
 | |
| //		// add new factor on separator back into the graph
 | |
| //		if (!factor->empty()) graph.push_back(factor);
 | |
| //
 | |
| //		// return the conditional Gaussian
 | |
| //		return conditional;
 | |
| //	}
 | |
| //
 | |
| //	/* ************************************************************************* */
 | |
| //	// This doubly templated function is generic. There is a GaussianFactorGraph
 | |
| //	// version that returns a more specific GaussianBayesNet.
 | |
| //	// Note, you will need to include this file to instantiate the function.
 | |
| //	/* ************************************************************************* */
 | |
| //	template<class Factor,class Conditional>
 | |
| //	BayesNet<Conditional> eliminate(FactorGraph<Factor>& factorGraph, const Ordering& ordering)
 | |
| //	{
 | |
| //		BayesNet<Conditional> bayesNet; // empty
 | |
| //
 | |
| //		BOOST_FOREACH(Index key, ordering) {
 | |
| //			boost::shared_ptr<Conditional> cg = eliminateOne<Factor,Conditional>(factorGraph,key);
 | |
| //			bayesNet.push_back(cg);
 | |
| //		}
 | |
| //
 | |
| //		return bayesNet;
 | |
| //	}
 | |
| 
 | |
| //	/* ************************************************************************* */
 | |
| //	template<class Factor, class Conditional>
 | |
| //	pair< BayesNet<Conditional>, FactorGraph<Factor> >
 | |
| //	factor(const BayesNet<Conditional>& bn, const Ordering& keys) {
 | |
| //		// Convert to factor graph
 | |
| //		FactorGraph<Factor> factorGraph(bn);
 | |
| //
 | |
| //		// Get the keys of all variables and remove all keys we want the marginal for
 | |
| //		Ordering ord = bn.ordering();
 | |
| //		BOOST_FOREACH(Index key, keys) ord.remove(key); // TODO: O(n*k), faster possible?
 | |
| //
 | |
| //		// eliminate partially,
 | |
| //		BayesNet<Conditional> conditional = eliminate<Factor,Conditional>(factorGraph,ord);
 | |
| //
 | |
| //		// at this moment, the factor graph only encodes P(keys)
 | |
| //		return make_pair(conditional,factorGraph);
 | |
| //		}
 | |
| //
 | |
| //	/* ************************************************************************* */
 | |
| //	template<class Factor, class Conditional>
 | |
| //	FactorGraph<Factor> marginalize(const BayesNet<Conditional>& bn, const Ordering& keys) {
 | |
| //
 | |
| //		// factor P(X,Y) as P(X|Y)P(Y), where Y corresponds to  keys
 | |
| //		pair< BayesNet<Conditional>, FactorGraph<Factor> > factors =
 | |
| //				gtsam::factor<Factor,Conditional>(bn,keys);
 | |
| //
 | |
| //		// throw away conditional, return marginal P(Y)
 | |
| //		return factors.second;
 | |
| //		}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| //	pair<Vector,Matrix> marginalGaussian(const GaussianFactorGraph& fg, const Symbol& key) {
 | |
| //
 | |
| //		// todo: this does not use colamd!
 | |
| //
 | |
| //		list<Symbol> ord;
 | |
| //		BOOST_FOREACH(const Symbol& k, fg.keys()) {
 | |
| //			if(k != key)
 | |
| //				ord.push_back(k);
 | |
| //		}
 | |
| //		Ordering ordering(ord);
 | |
| //
 | |
| //		// Now make another factor graph where we eliminate all the other variables
 | |
| //		GaussianFactorGraph marginal(fg);
 | |
| //		marginal.eliminate(ordering);
 | |
| //
 | |
| //		GaussianFactor::shared_ptr factor;
 | |
| //		for(size_t i=0; i<marginal.size(); i++)
 | |
| //			if(marginal[i] != NULL) {
 | |
| //				factor = marginal[i];
 | |
| //				break;
 | |
| //			}
 | |
| //
 | |
| //		if(factor->keys().size() != 1 || factor->keys().front() != key)
 | |
| //			throw runtime_error("Didn't get the right marginal!");
 | |
| //
 | |
| //		VectorValues mean_cfg(marginal.optimize(Ordering(key)));
 | |
| //		Matrix A(factor->get_A(key));
 | |
| //
 | |
| //		return make_pair(mean_cfg[key], inverse(prod(trans(A), A)));
 | |
| //	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 
 | |
| } // namespace gtsam
 |