131 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file easyPoint2KalmanFilter.cpp
 | 
						|
 *
 | 
						|
 * simple linear Kalman filter on a moving 2D point, but done using factor graphs
 | 
						|
 * This example uses the templated ExtendedKalmanFilter class to perform the same
 | 
						|
 * operations as in elaboratePoint2KalmanFilter
 | 
						|
 *
 | 
						|
 * @date Aug 19, 2011
 | 
						|
 * @author Frank Dellaert
 | 
						|
 * @author Stephen Williams
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam/nonlinear/ExtendedKalmanFilter-inl.h>
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
// Define Types for Linear System Test
 | 
						|
typedef TypedSymbol<Point2, 'x'> LinearKey;
 | 
						|
typedef Values<LinearKey> LinearValues;
 | 
						|
typedef Point2 LinearMeasurement;
 | 
						|
 | 
						|
int main() {
 | 
						|
 | 
						|
  // Create the Kalman Filter initialization point
 | 
						|
  Point2 x_initial(0.0, 0.0);
 | 
						|
  SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
 | 
						|
 | 
						|
  // Create an ExtendedKalmanFilter object
 | 
						|
  ExtendedKalmanFilter<LinearValues,LinearKey> ekf(x_initial, P_initial);
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
 | 
						|
  // In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
 | 
						|
  // For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
 | 
						|
  // Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
 | 
						|
  // where F is the state transition model/matrix, B is the control input model,
 | 
						|
  // and w is zero-mean, Gaussian white noise with covariance Q
 | 
						|
  // Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
 | 
						|
  // physical property, such as velocity or acceleration, and G is derived from physics
 | 
						|
  //
 | 
						|
  // For the purposes of this example, let us assume we are using a constant-position model and
 | 
						|
  // the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
 | 
						|
  // and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1].
 | 
						|
  Vector u = Vector_(2, 1.0, 0.0);
 | 
						|
  SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1), true);
 | 
						|
 | 
						|
  // This simple motion can be modeled with a BetweenFactor
 | 
						|
  // Create Keys
 | 
						|
  LinearKey x0(0), x1(1);
 | 
						|
  // Predict delta based on controls
 | 
						|
  Point2 difference(1,0);
 | 
						|
  // Create Factor
 | 
						|
  BetweenFactor<LinearValues,LinearKey> factor1(x0, x1, difference, Q);
 | 
						|
 | 
						|
  // Predict the new value with the EKF class
 | 
						|
  Point2 x1_predict = ekf.predict(factor1);
 | 
						|
  x1_predict.print("X1 Predict");
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
 | 
						|
  // This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1)
 | 
						|
  // For the Kalman Filter, this requires a measurement model h(x_{t}) = \hat{z}_{t}
 | 
						|
  // Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
 | 
						|
  // where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
 | 
						|
  //
 | 
						|
  // For the purposes of this example, let us assume we have something like a GPS that returns
 | 
						|
  // the current position of the robot. Then H = [1 0 ; 0 1]. Let us also assume that the measurement noise
 | 
						|
  // R = [0.25 0 ; 0 0.25].
 | 
						|
  SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25), true);
 | 
						|
 | 
						|
  // This simple measurement can be modeled with a PriorFactor
 | 
						|
  Point2 z1(1.0, 0.0);
 | 
						|
  PriorFactor<LinearValues,LinearKey> factor2(x1, z1, R);
 | 
						|
 | 
						|
  // Update the Kalman Filter with the measurement
 | 
						|
  Point2 x1_update = ekf.update(factor2);
 | 
						|
  x1_update.print("X1 Update");
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // Do the same thing two more times...
 | 
						|
  // Predict
 | 
						|
  LinearKey x2(2);
 | 
						|
  difference = Point2(1,0);
 | 
						|
  BetweenFactor<LinearValues,LinearKey> factor3(x1, x2, difference, Q);
 | 
						|
  Point2 x2_predict = ekf.predict(factor1);
 | 
						|
  x2_predict.print("X2 Predict");
 | 
						|
 | 
						|
  // Update
 | 
						|
  Point2 z2(2.0, 0.0);
 | 
						|
  PriorFactor<LinearValues,LinearKey> factor4(x2, z2, R);
 | 
						|
  Point2 x2_update = ekf.update(factor4);
 | 
						|
  x2_update.print("X2 Update");
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // Do the same thing one more time...
 | 
						|
  // Predict
 | 
						|
  LinearKey x3(3);
 | 
						|
  difference = Point2(1,0);
 | 
						|
  BetweenFactor<LinearValues,LinearKey> factor5(x2, x3, difference, Q);
 | 
						|
  Point2 x3_predict = ekf.predict(factor5);
 | 
						|
  x3_predict.print("X3 Predict");
 | 
						|
 | 
						|
  // Update
 | 
						|
  Point2 z3(3.0, 0.0);
 | 
						|
  PriorFactor<LinearValues,LinearKey> factor6(x3, z3, R);
 | 
						|
  Point2 x3_update = ekf.update(factor6);
 | 
						|
  x3_update.print("X3 Update");
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 |