123 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file   GaussianBayesNet.cpp
 | |
|  * @brief  Chordal Bayes Net, the result of eliminating a factor graph
 | |
|  * @author Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <stdarg.h>
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| 
 | |
| #include "GaussianBayesNet.h"
 | |
| #include "VectorConfig.h"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Explicitly instantiate so we don't have to include everywhere
 | |
| #include "BayesNet-inl.h"
 | |
| template class BayesNet<GaussianConditional>;
 | |
| 
 | |
| // trick from some reading group
 | |
| #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL) 
 | |
| #define REVERSE_FOREACH_PAIR( KEY, VAL, COL) BOOST_REVERSE_FOREACH (boost::tie(KEY,VAL),COL)
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| GaussianBayesNet scalarGaussian(const string& key, double mu, double sigma) {
 | |
| 	GaussianBayesNet bn;
 | |
| 	GaussianConditional::shared_ptr
 | |
| 		conditional(new GaussianConditional(key, Vector_(1,mu), eye(1), Vector_(1,sigma)));
 | |
| 	bn.push_back(conditional);
 | |
| 	return bn;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| GaussianBayesNet simpleGaussian(const string& key, const Vector& mu, double sigma) {
 | |
| 	GaussianBayesNet bn;
 | |
| 	size_t n = mu.size();
 | |
| 	GaussianConditional::shared_ptr
 | |
| 		conditional(new GaussianConditional(key, mu, eye(n), repeat(n,sigma)));
 | |
| 	bn.push_back(conditional);
 | |
| 	return bn;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void push_front(GaussianBayesNet& bn, const string& key, Vector d, Matrix R,
 | |
| 		const string& name1, Matrix S, Vector sigmas) {
 | |
| 	GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, sigmas));
 | |
| 	bn.push_front(cg);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void push_front(GaussianBayesNet& bn, const string& key, Vector d, Matrix R,
 | |
| 		const string& name1, Matrix S, const string& name2, Matrix T, Vector sigmas) {
 | |
| 	GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, name2, T, sigmas));
 | |
| 	bn.push_front(cg);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| VectorConfig optimize(const GaussianBayesNet& bn)
 | |
| {
 | |
|   VectorConfig result;
 | |
| 	
 | |
|   /** solve each node in turn in topological sort order (parents first)*/
 | |
| 	BOOST_REVERSE_FOREACH(GaussianConditional::shared_ptr cg, bn) {
 | |
|     Vector x = cg->solve(result); // Solve for that variable
 | |
|     result.insert(cg->key(),x);   // store result in partial solution
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */  
 | |
| pair<Matrix,Vector> matrix(const GaussianBayesNet& bn)  {
 | |
| 
 | |
|   // add the dimensions of all variables to get matrix dimension
 | |
|   // and at the same time create a mapping from keys to indices
 | |
|   size_t N=0; map<string,size_t> mapping;
 | |
|   BOOST_FOREACH(GaussianConditional::shared_ptr cg,bn) {
 | |
|     mapping.insert(make_pair(cg->key(),N));
 | |
|     N += cg->dim();
 | |
|   }
 | |
| 
 | |
|   // create matrix and copy in values
 | |
|   Matrix R = zeros(N,N);
 | |
|   Vector d(N);
 | |
| 	string key; size_t I;
 | |
|   FOREACH_PAIR(key,I,mapping) {
 | |
|     // find corresponding conditional
 | |
|     GaussianConditional::shared_ptr cg = bn[key];
 | |
|     
 | |
|     // get RHS and copy to d
 | |
|     const Vector& d_ = cg->get_d();
 | |
|     const size_t n = d_.size();
 | |
|     for (size_t i=0;i<n;i++)
 | |
|       d(I+i) = d_(i);
 | |
| 
 | |
|     // get leading R matrix and copy to R
 | |
|     const Matrix& R_ = cg->get_R();
 | |
|     for (size_t i=0;i<n;i++)
 | |
|       for(size_t j=0;j<n;j++)
 | |
|       	R(I+i,I+j) = R_(i,j);
 | |
| 
 | |
|     // loop over S matrices and copy them into R
 | |
|     GaussianConditional::const_iterator keyS = cg->parentsBegin();
 | |
|     for (; keyS!=cg->parentsEnd(); keyS++) {
 | |
|       Matrix S = keyS->second;                   // get S matrix      
 | |
|       const size_t m = S.size1(), n = S.size2(); // find S size
 | |
|       const size_t J = mapping[keyS->first];     // find column index
 | |
|       for (size_t i=0;i<m;i++)
 | |
|       	for(size_t j=0;j<n;j++)
 | |
|       		R(I+i,J+j) = S(i,j);
 | |
|     } // keyS
 | |
| 
 | |
|   } // keyI
 | |
| 
 | |
|   return make_pair(R,d);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| } // namespace gtsam
 |