35 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			35 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Matlab
		
	
	
| function h = covarianceEllipse(x,P,color, k)
 | |
| % covarianceEllipse plots a Gaussian as an uncertainty ellipse
 | |
| % Based on Maybeck Vol 1, page 366
 | |
| % k=2.296 corresponds to 1 std, 68.26% of all probability
 | |
| % k=11.82 corresponds to 3 std, 99.74% of all probability
 | |
| %
 | |
| % covarianceEllipse(x,P,color,k)
 | |
| % it is assumed x and y are the first two components of state x
 | |
| % k is scaling for std deviations, defaults to 1 std
 | |
| 
 | |
| [e,s] = eig(P(1:2,1:2));
 | |
| s1 = s(1,1);
 | |
| s2 = s(2,2);
 | |
| if nargin<4, k = 2.296; end;
 | |
| [ex,ey] = ellipse( sqrt(s1*k)*e(:,1), sqrt(s2*k)*e(:,2), x(1:2) );
 | |
| h = line(ex,ey,'color',color);
 | |
| 
 | |
|     function [x,y] = ellipse(a,b,c);
 | |
|         % ellipse: return the x and y coordinates for an ellipse
 | |
|         % [x,y] = ellipse(a,b,c);
 | |
|         % a, and b are the axes. c is the center
 | |
|         
 | |
|         global ellipse_x ellipse_y
 | |
|         if ~exist('elipse_x')
 | |
|             q =0:2*pi/25:2*pi;
 | |
|             ellipse_x = cos(q);
 | |
|             ellipse_y = sin(q);
 | |
|         end
 | |
|         
 | |
|         points = a*ellipse_x + b*ellipse_y;
 | |
|         x = c(1) + points(1,:);
 | |
|         y = c(2) + points(2,:);
 | |
|     end
 | |
| 
 | |
| end |