326 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Matlab
		
	
	
import gtsam.*;
 | 
						|
 | 
						|
% Test GTSAM covariances on a factor graph with:
 | 
						|
% Between Factors
 | 
						|
% IMU factors (type 1 and type 2)
 | 
						|
% GPS prior factors on poses
 | 
						|
% SmartProjectionPoseFactors
 | 
						|
% Authors: Luca Carlone, David Jensen
 | 
						|
% Date: 2014/4/6
 | 
						|
 | 
						|
 | 
						|
% Check for an extneral configuration, used when running multiple tests
 | 
						|
if ~exist('externallyConfigured', 'var')
 | 
						|
  clc
 | 
						|
  clear all
 | 
						|
  close all
 | 
						|
  
 | 
						|
  saveResults = 0;
 | 
						|
  
 | 
						|
  %% Configuration
 | 
						|
  % General options
 | 
						|
  options.useRealData = 1;           % controls whether or not to use the real data (if available) as the ground truth traj
 | 
						|
  options.includeBetweenFactors = 0; % if true, BetweenFactors will be added between consecutive poses
 | 
						|
  
 | 
						|
  options.includeIMUFactors = 1;     % if true, IMU factors will be added between consecutive states (biases, poses, velocities)
 | 
						|
  options.imuFactorType = 1;         % Set to 1 or 2 to use IMU type 1 or type 2 factors (will default to type 1)
 | 
						|
  options.imuNonzeroBias = 0;        % if true, a nonzero bias is applied to IMU measurements
 | 
						|
  
 | 
						|
  options.includeCameraFactors = 1;  % if true, SmartProjectionPose3Factors will be used with randomly generated landmarks
 | 
						|
  options.numberOfLandmarks = 1000;  % Total number of visual landmarks (randomly generated in a box around the trajectory)
 | 
						|
  
 | 
						|
  options.includeGPSFactors = 0;     % if true, GPS factors will be added as priors to poses
 | 
						|
  options.gpsStartPose = 100;        % Pose number to start including GPS factors at
 | 
						|
  
 | 
						|
  options.trajectoryLength = 100;%209;    % length of the ground truth trajectory
 | 
						|
  options.subsampleStep = 20;        % number of poses to skip when using real data (to reduce computation on long trajectories)
 | 
						|
  
 | 
						|
  numMonteCarloRuns = 2;             % number of Monte Carlo runs to perform
 | 
						|
  
 | 
						|
  % Noise values to be adjusted
 | 
						|
  sigma_ang = 1e-2;       % std. deviation for rotational noise, typical 1e-2
 | 
						|
  sigma_cart = 1e-1;      % std. deviation for translational noise, typical 1e-1
 | 
						|
  sigma_accel = 1e-3;     % std. deviation for accelerometer noise, typical 1e-3
 | 
						|
  sigma_gyro = 1e-5;      % std. deviation for gyroscope noise, typical 1e-5
 | 
						|
  sigma_accelBias = 1e-4; % std. deviation for added accelerometer constant bias, typical 1e-3
 | 
						|
  sigma_gyroBias = 1e-6;  % std. deviation for added gyroscope constant bias, typical 1e-5
 | 
						|
  sigma_gps = 1e-4;       % std. deviation for noise in GPS position measurements, typical 1e-4
 | 
						|
  sigma_camera = 1;  % std. deviation for noise in camera measurements (pixels)
 | 
						|
  
 | 
						|
  % Set log files
 | 
						|
  testName = sprintf('sa-%1.2g-sc-%1.2g-sacc-%1.2g-sg-%1.2g',sigma_ang,sigma_cart,sigma_accel,sigma_gyro)
 | 
						|
  folderName = 'results/'
 | 
						|
else
 | 
						|
  fprintf('Tests have been externally configured.\n');
 | 
						|
end
 | 
						|
 | 
						|
%% Between metadata
 | 
						|
noiseVectorPose = [sigma_ang * ones(3,1); sigma_cart * ones(3,1)];
 | 
						|
noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose);
 | 
						|
 | 
						|
%% Imu metadata
 | 
						|
metadata.imu.epsBias = 1e-10; % was 1e-7
 | 
						|
metadata.imu.g = [0;0;0];
 | 
						|
metadata.imu.omegaCoriolis = [0;0;0];
 | 
						|
metadata.imu.IntegrationSigma = 1e-5;
 | 
						|
metadata.imu.zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
 | 
						|
metadata.imu.AccelerometerSigma = sigma_accel;
 | 
						|
metadata.imu.GyroscopeSigma = sigma_gyro;
 | 
						|
metadata.imu.BiasAccelerometerSigma = metadata.imu.epsBias;  % noise on expected change in accelerometer bias over time
 | 
						|
metadata.imu.BiasGyroscopeSigma = metadata.imu.epsBias;      % noise on expected change in gyroscope bias over time
 | 
						|
% noise on initial accelerometer and gyroscope biases
 | 
						|
if options.imuNonzeroBias == 1
 | 
						|
  metadata.imu.BiasAccOmegaInit = [sigma_accelBias * ones(3,1); sigma_gyroBias * ones(3,1)];
 | 
						|
else
 | 
						|
  metadata.imu.BiasAccOmegaInit = metadata.imu.epsBias * ones(6,1);
 | 
						|
end
 | 
						|
 | 
						|
noiseVel =  noiseModel.Isotropic.Sigma(3, 1e-2); % was 0.1
 | 
						|
noiseBiasBetween = noiseModel.Diagonal.Sigmas([metadata.imu.BiasAccelerometerSigma * ones(3,1);...
 | 
						|
                                               metadata.imu.BiasGyroscopeSigma * ones(3,1)]); % between on biases
 | 
						|
noisePriorBias = noiseModel.Diagonal.Sigmas(metadata.imu.BiasAccOmegaInit);
 | 
						|
 | 
						|
noiseVectorAccel = metadata.imu.AccelerometerSigma * ones(3,1);
 | 
						|
noiseVectorGyro = metadata.imu.GyroscopeSigma  * ones(3,1);
 | 
						|
 | 
						|
%% GPS metadata
 | 
						|
noiseVectorGPS = sigma_gps * ones(3,1);
 | 
						|
noiseGPS = noiseModel.Diagonal.Precisions([zeros(3,1); 1/sigma_gps^2 * ones(3,1)]);
 | 
						|
 | 
						|
%% Camera metadata
 | 
						|
metadata.camera.calibration = Cal3_S2(500,500,0,1920/2,1200/2); % Camera calibration
 | 
						|
metadata.camera.xlims = [-100, 650];    % x limits on area for landmark creation
 | 
						|
metadata.camera.ylims = [-100, 700];    % y limits on area for landmark creation
 | 
						|
metadata.camera.zlims = [-30, 30];      % z limits on area for landmark creation
 | 
						|
metadata.camera.visualRange = 100;      % maximum distance from the camera that a landmark can be seen (meters)
 | 
						|
metadata.camera.bodyPoseCamera = Pose3; % pose of camera in body
 | 
						|
metadata.camera.CameraSigma = sigma_camera;
 | 
						|
cameraMeasurementNoise = noiseModel.Isotropic.Sigma(2, metadata.camera.CameraSigma);
 | 
						|
noiseVectorCamera = metadata.camera.CameraSigma .* ones(2,1);
 | 
						|
 | 
						|
% Create landmarks and smart factors
 | 
						|
if options.includeCameraFactors == 1
 | 
						|
  for i = 1:options.numberOfLandmarks
 | 
						|
    metadata.camera.gtLandmarkPoints(i) = Point3( ...
 | 
						|
      [rand() * (metadata.camera.xlims(2)-metadata.camera.xlims(1)) + metadata.camera.xlims(1); ...  
 | 
						|
       rand() * (metadata.camera.ylims(2)-metadata.camera.ylims(1)) + metadata.camera.ylims(1); ...
 | 
						|
       rand() * (metadata.camera.zlims(2)-metadata.camera.zlims(1)) + metadata.camera.zlims(1)]);
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
%% Create ground truth trajectory and measurements
 | 
						|
[gtValues, gtMeasurements] = imuSimulator.covarianceAnalysisCreateTrajectory(options, metadata);
 | 
						|
 | 
						|
%% Create ground truth graph
 | 
						|
% Set up noise models
 | 
						|
gtNoiseModels.noisePose = noisePose;
 | 
						|
gtNoiseModels.noiseVel = noiseVel;
 | 
						|
gtNoiseModels.noiseBiasBetween = noiseBiasBetween;
 | 
						|
gtNoiseModels.noisePriorPose = noisePose;
 | 
						|
gtNoiseModels.noisePriorBias = noisePriorBias;
 | 
						|
gtNoiseModels.noiseGPS = noiseGPS;
 | 
						|
gtNoiseModels.noiseCamera = cameraMeasurementNoise;
 | 
						|
 | 
						|
% Set measurement noise to 0, because this is ground truth
 | 
						|
gtMeasurementNoise.poseNoiseVector = zeros(6,1);
 | 
						|
gtMeasurementNoise.imu.accelNoiseVector = zeros(3,1);
 | 
						|
gtMeasurementNoise.imu.gyroNoiseVector = zeros(3,1);
 | 
						|
gtMeasurementNoise.cameraNoiseVector = zeros(2,1);
 | 
						|
gtMeasurementNoise.gpsNoiseVector = zeros(3,1);
 | 
						|
  
 | 
						|
% Set IMU biases to zero
 | 
						|
metadata.imu.accelConstantBiasVector = zeros(3,1);
 | 
						|
metadata.imu.gyroConstantBiasVector = zeros(3,1);
 | 
						|
    
 | 
						|
[gtGraph, projectionFactorSeenBy] = imuSimulator.covarianceAnalysisCreateFactorGraph( ...
 | 
						|
    gtMeasurements, ...     % ground truth measurements
 | 
						|
    gtValues, ...           % ground truth Values
 | 
						|
    gtNoiseModels, ...      % noise models to use in this graph
 | 
						|
    gtMeasurementNoise, ... % noise to apply to measurements
 | 
						|
    options, ...            % options for the graph (e.g. which factors to include)
 | 
						|
    metadata);              % misc data necessary for factor creation
 | 
						|
 | 
						|
%% Display, printing, and plotting of ground truth
 | 
						|
%gtGraph.print(sprintf('\nGround Truth Factor graph:\n'));
 | 
						|
%gtValues.print(sprintf('\nGround Truth Values:\n  '));
 | 
						|
 | 
						|
figure(1)
 | 
						|
hold on;
 | 
						|
 | 
						|
if options.includeCameraFactors
 | 
						|
  b = [-1000 2000 -2000 2000 -30 30];
 | 
						|
  for i = 1:size(metadata.camera.gtLandmarkPoints,2)
 | 
						|
      p = metadata.camera.gtLandmarkPoints(i).vector;
 | 
						|
      if(p(1) > b(1) && p(1) < b(2) && p(2) > b(3) && p(2) < b(4) && p(3) > b(5) && p(3) < b(6))
 | 
						|
          plot3(p(1), p(2), p(3), 'k+');
 | 
						|
      end
 | 
						|
  end
 | 
						|
  pointsToPlot = metadata.camera.gtLandmarkPoints(find(projectionFactorSeenBy > 0));
 | 
						|
  for i = 1:length(pointsToPlot)
 | 
						|
      p = pointsToPlot(i).vector;
 | 
						|
      plot3(p(1), p(2), p(3), 'gs', 'MarkerSize', 10);
 | 
						|
  end
 | 
						|
end
 | 
						|
plot3DPoints(gtValues);
 | 
						|
%plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues));
 | 
						|
plot3DTrajectory(gtValues, '-r');
 | 
						|
 | 
						|
axis equal
 | 
						|
 | 
						|
% optimize
 | 
						|
optimizer = GaussNewtonOptimizer(gtGraph, gtValues);
 | 
						|
gtEstimate = optimizer.optimize();
 | 
						|
plot3DTrajectory(gtEstimate, '-k');
 | 
						|
% estimate should match gtValues if graph is correct.
 | 
						|
fprintf('Error in ground truth graph at gtValues: %g \n', gtGraph.error(gtValues) );
 | 
						|
fprintf('Error in ground truth graph at gtEstimate: %g \n', gtGraph.error(gtEstimate) );
 | 
						|
 | 
						|
disp('Plotted ground truth')
 | 
						|
 | 
						|
%% Monte Carlo Runs
 | 
						|
 | 
						|
% Set up noise models
 | 
						|
monteCarloNoiseModels.noisePose = noisePose;
 | 
						|
monteCarloNoiseModels.noiseVel = noiseVel;
 | 
						|
monteCarloNoiseModels.noiseBiasBetween = noiseBiasBetween;
 | 
						|
monteCarloNoiseModels.noisePriorPose = noisePose;
 | 
						|
monteCarloNoiseModels.noisePriorBias = noisePriorBias;
 | 
						|
monteCarloNoiseModels.noiseGPS = noiseGPS;
 | 
						|
monteCarloNoiseModels.noiseCamera = cameraMeasurementNoise;
 | 
						|
 | 
						|
% Set measurement noise for monte carlo runs
 | 
						|
monteCarloMeasurementNoise.poseNoiseVector = zeros(6,1); %noiseVectorPose;
 | 
						|
monteCarloMeasurementNoise.imu.accelNoiseVector = noiseVectorAccel;
 | 
						|
monteCarloMeasurementNoise.imu.gyroNoiseVector = noiseVectorGyro;
 | 
						|
monteCarloMeasurementNoise.gpsNoiseVector = noiseVectorGPS;
 | 
						|
monteCarloMeasurementNoise.cameraNoiseVector = noiseVectorCamera;
 | 
						|
  
 | 
						|
for k=1:numMonteCarloRuns
 | 
						|
  fprintf('Monte Carlo Run %d...\n', k');
 | 
						|
 | 
						|
  % Create a random bias for each run
 | 
						|
  if options.imuNonzeroBias == 1
 | 
						|
    metadata.imu.accelConstantBiasVector = metadata.imu.BiasAccOmegaInit(1:3) .* randn(3,1);
 | 
						|
    metadata.imu.gyroConstantBiasVector = metadata.imu.BiasAccOmegaInit(4:6) .* randn(3,1);
 | 
						|
    %metadata.imu.accelConstantBiasVector = 1e-2 * ones(3,1);
 | 
						|
    %metadata.imu.gyroConstantBiasVector = 1e-3 * ones(3,1);
 | 
						|
  else
 | 
						|
    metadata.imu.accelConstantBiasVector = zeros(3,1);
 | 
						|
    metadata.imu.gyroConstantBiasVector = zeros(3,1);
 | 
						|
  end
 | 
						|
  
 | 
						|
  % Create a new graph using noisy measurements
 | 
						|
  [graph, projectionFactorSeenBy] = imuSimulator.covarianceAnalysisCreateFactorGraph( ...
 | 
						|
    gtMeasurements, ...     % ground truth measurements
 | 
						|
    gtValues, ...           % ground truth Values
 | 
						|
    monteCarloNoiseModels, ...      % noise models to use in this graph
 | 
						|
    monteCarloMeasurementNoise, ... % noise to apply to measurements
 | 
						|
    options, ...            % options for the graph (e.g. which factors to include)
 | 
						|
    metadata);              % misc data necessary for factor creation
 | 
						|
      
 | 
						|
  %graph.print('graph')
 | 
						|
  
 | 
						|
  % optimize
 | 
						|
  optimizer = GaussNewtonOptimizer(graph, gtValues);
 | 
						|
  estimate = optimizer.optimize();
 | 
						|
  figure(1)
 | 
						|
  plot3DTrajectory(estimate, '-b');
 | 
						|
  
 | 
						|
  marginals = Marginals(graph, estimate);
 | 
						|
  
 | 
						|
  % for each pose in the trajectory
 | 
						|
  for i=0:options.trajectoryLength
 | 
						|
    % compute estimation errors
 | 
						|
    currentPoseKey = symbol('x', i);
 | 
						|
    gtPosition  = gtValues.at(currentPoseKey).translation.vector;
 | 
						|
    estPosition = estimate.at(currentPoseKey).translation.vector;
 | 
						|
    estR = estimate.at(currentPoseKey).rotation.matrix;
 | 
						|
    errPosition = estPosition - gtPosition;
 | 
						|
    
 | 
						|
    % compute covariances:
 | 
						|
    cov = marginals.marginalCovariance(currentPoseKey);
 | 
						|
    covPosition = estR * cov(4:6,4:6) * estR';
 | 
						|
    % compute NEES using (estimationError = estimatedValues - gtValues) and estimated covariances
 | 
						|
    NEES(k,i+1) = errPosition' * inv(covPosition) * errPosition; % distributed according to a Chi square with n = 3 dof
 | 
						|
  end
 | 
						|
  
 | 
						|
  figure(2)
 | 
						|
  hold on
 | 
						|
  plot(NEES(k,:),'-b','LineWidth',1.5)
 | 
						|
end
 | 
						|
%%
 | 
						|
ANEES = mean(NEES);
 | 
						|
plot(ANEES,'-r','LineWidth',2)
 | 
						|
plot(3*ones(size(ANEES,2),1),'k--'); % Expectation(ANEES) = number of dof
 | 
						|
box on
 | 
						|
set(gca,'Fontsize',16)
 | 
						|
title('NEES and ANEES');
 | 
						|
if saveResults
 | 
						|
  saveas(gcf,horzcat(folderName,'runs-',testName,'.fig'),'fig');
 | 
						|
  saveas(gcf,horzcat(folderName,'runs-',testName,'.png'),'png');
 | 
						|
end
 | 
						|
 | 
						|
%%
 | 
						|
figure(1)
 | 
						|
box on
 | 
						|
set(gca,'Fontsize',16)
 | 
						|
title('Ground truth and estimates for each MC runs');
 | 
						|
if saveResults
 | 
						|
  saveas(gcf,horzcat(folderName,'gt-',testName,'.fig'),'fig');
 | 
						|
  saveas(gcf,horzcat(folderName,'gt-',testName,'.png'),'png');
 | 
						|
end
 | 
						|
 | 
						|
%% Let us compute statistics on the overall NEES
 | 
						|
n = 3; % position vector dimension
 | 
						|
N = numMonteCarloRuns; % number of runs
 | 
						|
alpha = 0.01; % confidence level
 | 
						|
 | 
						|
% mean_value = n*N; % mean value of the Chi-square distribution
 | 
						|
% (we divide by n * N and for this reason we expect ANEES around 1)
 | 
						|
r1 = chi2inv(alpha, n * N)  / (n * N);
 | 
						|
r2 = chi2inv(1-alpha, n * N)  / (n * N);
 | 
						|
 | 
						|
% output here
 | 
						|
fprintf(1, 'r1 = %g\n', r1);
 | 
						|
fprintf(1, 'r2 = %g\n', r2);
 | 
						|
 | 
						|
figure(3)
 | 
						|
hold on
 | 
						|
plot(ANEES/n,'-b','LineWidth',2)
 | 
						|
plot(ones(size(ANEES,2),1),'r-');
 | 
						|
plot(r1*ones(size(ANEES,2),1),'k-.');
 | 
						|
plot(r2*ones(size(ANEES,2),1),'k-.');
 | 
						|
box on
 | 
						|
set(gca,'Fontsize',16)
 | 
						|
title('NEES normalized by dof VS bounds');
 | 
						|
if saveResults
 | 
						|
  saveas(gcf,horzcat(folderName,'ANEES-',testName,'.fig'),'fig');
 | 
						|
  saveas(gcf,horzcat(folderName,'ANEES-',testName,'.png'),'png');
 | 
						|
  logFile = horzcat(folderName,'log-',testName);
 | 
						|
  save(logFile)
 | 
						|
end
 | 
						|
 | 
						|
%% NEES COMPUTATION (Bar-Shalom 2001, Section 5.4)
 | 
						|
% the nees for a single experiment (i) is defined as
 | 
						|
%               NEES_i = xtilda' * inv(P) * xtilda,
 | 
						|
% where xtilda in R^n is the estimation
 | 
						|
% error, and P is the covariance estimated by the approach we want to test
 | 
						|
%
 | 
						|
% Average NEES. Given N Monte Carlo simulations, i=1,...,N, the average
 | 
						|
% NEES is:
 | 
						|
%                   ANEES = sum(NEES_i)/N
 | 
						|
% The quantity N*ANEES is distributed according to a Chi-square
 | 
						|
% distribution with N*n degrees of freedom.
 | 
						|
%
 | 
						|
% For the single run case, N=1, therefore NEES = ANEES is distributed
 | 
						|
% according to a chi-square distribution with n degrees of freedom (e.g. n=3
 | 
						|
% if we are testing a position estimate)
 | 
						|
% Therefore its mean should be n (difficult to see from a single run)
 | 
						|
% and, with probability alpha, it should hold:
 | 
						|
%
 | 
						|
% NEES in [r1, r2]
 | 
						|
%
 | 
						|
% where r1 and r2 are built from the Chi-square distribution
 | 
						|
 |