1033 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1033 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file    testGaussianISAM2.cpp
 | 
						|
 * @brief   Unit tests for GaussianISAM2
 | 
						|
 * @author  Michael Kaess
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam/base/debug.h>
 | 
						|
#include <gtsam/base/TestableAssertions.h>
 | 
						|
#include <gtsam/base/LieVector.h>
 | 
						|
#include <gtsam/geometry/Point2.h>
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
#include <gtsam/inference/SymbolicFactorGraph.h>
 | 
						|
#include <gtsam/linear/GaussianBayesNet.h>
 | 
						|
#include <gtsam/linear/GaussianSequentialSolver.h>
 | 
						|
#include <gtsam/linear/GaussianBayesTree.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/Ordering.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/ISAM2.h>
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
#include <gtsam/slam/BearingRangeFactor.h>
 | 
						|
#include <tests/smallExample.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/foreach.hpp>
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
#include <boost/assign.hpp>
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using boost::shared_ptr;
 | 
						|
 | 
						|
const double tol = 1e-4;
 | 
						|
 | 
						|
//  SETDEBUG("ISAM2 update", true);
 | 
						|
//  SETDEBUG("ISAM2 update verbose", true);
 | 
						|
//  SETDEBUG("ISAM2 recalculate", true);
 | 
						|
 | 
						|
// Set up parameters
 | 
						|
SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.1, 0.1, M_PI/100.0));
 | 
						|
SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas(Vector_(2, M_PI/100.0, 0.1));
 | 
						|
 | 
						|
ISAM2 createSlamlikeISAM2(
 | 
						|
    boost::optional<Values&> init_values = boost::none,
 | 
						|
    boost::optional<NonlinearFactorGraph&> full_graph = boost::none,
 | 
						|
    const ISAM2Params& params = ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, true)) {
 | 
						|
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  ISAM2 isam(params);
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
 | 
						|
  // i keeps track of the time step
 | 
						|
  size_t i = 0;
 | 
						|
 | 
						|
  // Add a prior at time 0 and update isam
 | 
						|
  {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(PriorFactor<Pose2>(0, Pose2(0.0, 0.0, 0.0), odoNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((0), Pose2(0.01, 0.01, 0.01));
 | 
						|
    fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
 | 
						|
 | 
						|
    isam.update(newfactors, init);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add odometry from time 0 to time 5
 | 
						|
  for( ; i<5; ++i) {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
    fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
 | 
						|
    isam.update(newfactors, init);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add odometry from time 5 to 6 and landmark measurement at time 5
 | 
						|
  {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    newfactors.add(BearingRangeFactor<Pose2,Point2>(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise));
 | 
						|
    newfactors.add(BearingRangeFactor<Pose2,Point2>(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((i+1), Pose2(1.01, 0.01, 0.01));
 | 
						|
    init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | 
						|
    init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | 
						|
    fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
 | 
						|
    fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | 
						|
    fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | 
						|
 | 
						|
    isam.update(newfactors, init);
 | 
						|
    ++ i;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add odometry from time 6 to time 10
 | 
						|
  for( ; i<10; ++i) {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
    fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
 | 
						|
    isam.update(newfactors, init);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add odometry from time 10 to 11 and landmark measurement at time 10
 | 
						|
  {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    newfactors.add(BearingRangeFactor<Pose2,Point2>(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
 | 
						|
    newfactors.add(BearingRangeFactor<Pose2,Point2>(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((i+1), Pose2(6.9, 0.1, 0.01));
 | 
						|
    fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
 | 
						|
 | 
						|
    isam.update(newfactors, init);
 | 
						|
    ++ i;
 | 
						|
  }
 | 
						|
 | 
						|
  if (full_graph)
 | 
						|
    *full_graph = fullgraph;
 | 
						|
 | 
						|
  if (init_values)
 | 
						|
    *init_values = fullinit;
 | 
						|
 | 
						|
  return isam;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, ImplAddVariables) {
 | 
						|
 | 
						|
  // Create initial state
 | 
						|
  Values theta;
 | 
						|
  theta.insert(0, Pose2(.1, .2, .3));
 | 
						|
  theta.insert(100, Point2(.4, .5));
 | 
						|
  Values newTheta;
 | 
						|
  newTheta.insert(1, Pose2(.6, .7, .8));
 | 
						|
 | 
						|
  VectorValues delta;
 | 
						|
  delta.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  delta.insert(1, Vector_(2, .4, .5));
 | 
						|
 | 
						|
  VectorValues deltaNewton;
 | 
						|
  deltaNewton.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaNewton.insert(1, Vector_(2, .4, .5));
 | 
						|
 | 
						|
  VectorValues deltaRg;
 | 
						|
  deltaRg.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaRg.insert(1, Vector_(2, .4, .5));
 | 
						|
 | 
						|
  vector<bool> replacedKeys(2, false);
 | 
						|
 | 
						|
  Ordering ordering; ordering += 100, 0;
 | 
						|
 | 
						|
  // Verify initial state
 | 
						|
  LONGS_EQUAL(0, ordering[100]);
 | 
						|
  LONGS_EQUAL(1, ordering[0]);
 | 
						|
  EXPECT(assert_equal(delta[0], delta[ordering[100]]));
 | 
						|
  EXPECT(assert_equal(delta[1], delta[ordering[0]]));
 | 
						|
 | 
						|
  // Create expected state
 | 
						|
  Values thetaExpected;
 | 
						|
  thetaExpected.insert(0, Pose2(.1, .2, .3));
 | 
						|
  thetaExpected.insert(100, Point2(.4, .5));
 | 
						|
  thetaExpected.insert(1, Pose2(.6, .7, .8));
 | 
						|
 | 
						|
  VectorValues deltaExpected;
 | 
						|
  deltaExpected.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaExpected.insert(1, Vector_(2, .4, .5));
 | 
						|
  deltaExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
 | 
						|
 | 
						|
  VectorValues deltaNewtonExpected;
 | 
						|
  deltaNewtonExpected.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaNewtonExpected.insert(1, Vector_(2, .4, .5));
 | 
						|
  deltaNewtonExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
 | 
						|
 | 
						|
  VectorValues deltaRgExpected;
 | 
						|
  deltaRgExpected.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaRgExpected.insert(1, Vector_(2, .4, .5));
 | 
						|
  deltaRgExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
 | 
						|
 | 
						|
  vector<bool> replacedKeysExpected(3, false);
 | 
						|
 | 
						|
  Ordering orderingExpected; orderingExpected += 100, 0, 1;
 | 
						|
 | 
						|
  // Expand initial state
 | 
						|
  ISAM2::Impl::AddVariables(newTheta, theta, delta, deltaNewton, deltaRg, replacedKeys, ordering);
 | 
						|
 | 
						|
  EXPECT(assert_equal(thetaExpected, theta));
 | 
						|
  EXPECT(assert_equal(deltaExpected, delta));
 | 
						|
  EXPECT(assert_equal(deltaNewtonExpected, deltaNewton));
 | 
						|
  EXPECT(assert_equal(deltaRgExpected, deltaRg));
 | 
						|
  EXPECT(assert_container_equality(replacedKeysExpected, replacedKeys));
 | 
						|
  EXPECT(assert_equal(orderingExpected, ordering));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, ImplRemoveVariables) {
 | 
						|
 | 
						|
  // Create initial state
 | 
						|
  Values theta;
 | 
						|
  theta.insert(0, Pose2(.1, .2, .3));
 | 
						|
  theta.insert(1, Pose2(.6, .7, .8));
 | 
						|
  theta.insert(100, Point2(.4, .5));
 | 
						|
 | 
						|
  SymbolicFactorGraph sfg;
 | 
						|
  sfg.push_back(boost::make_shared<IndexFactor>(Index(0), Index(2)));
 | 
						|
  sfg.push_back(boost::make_shared<IndexFactor>(Index(0), Index(1)));
 | 
						|
  VariableIndex variableIndex(sfg);
 | 
						|
 | 
						|
  VectorValues delta;
 | 
						|
  delta.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  delta.insert(1, Vector_(3, .4, .5, .6));
 | 
						|
  delta.insert(2, Vector_(2, .7, .8));
 | 
						|
 | 
						|
  VectorValues deltaNewton;
 | 
						|
  deltaNewton.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaNewton.insert(1, Vector_(3, .4, .5, .6));
 | 
						|
  deltaNewton.insert(2, Vector_(2, .7, .8));
 | 
						|
 | 
						|
  VectorValues deltaRg;
 | 
						|
  deltaRg.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaRg.insert(1, Vector_(3, .4, .5, .6));
 | 
						|
  deltaRg.insert(2, Vector_(2, .7, .8));
 | 
						|
 | 
						|
  vector<bool> replacedKeys(3, false);
 | 
						|
  replacedKeys[0] = true;
 | 
						|
  replacedKeys[1] = false;
 | 
						|
  replacedKeys[2] = true;
 | 
						|
 | 
						|
  Ordering ordering; ordering += 100, 1, 0;
 | 
						|
 | 
						|
  ISAM2::Nodes nodes(3);
 | 
						|
 | 
						|
  // Verify initial state
 | 
						|
  LONGS_EQUAL(0, ordering[100]);
 | 
						|
  LONGS_EQUAL(1, ordering[1]);
 | 
						|
  LONGS_EQUAL(2, ordering[0]);
 | 
						|
 | 
						|
  // Create expected state
 | 
						|
  Values thetaExpected;
 | 
						|
  thetaExpected.insert(0, Pose2(.1, .2, .3));
 | 
						|
  thetaExpected.insert(100, Point2(.4, .5));
 | 
						|
 | 
						|
  SymbolicFactorGraph sfgRemoved;
 | 
						|
  sfgRemoved.push_back(boost::make_shared<IndexFactor>(Index(0), Index(1)));
 | 
						|
  sfgRemoved.push_back(SymbolicFactorGraph::sharedFactor()); // Add empty factor to keep factor indices consistent
 | 
						|
  VariableIndex variableIndexExpected(sfgRemoved);
 | 
						|
 | 
						|
  VectorValues deltaExpected;
 | 
						|
  deltaExpected.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaExpected.insert(1, Vector_(2, .7, .8));
 | 
						|
 | 
						|
  VectorValues deltaNewtonExpected;
 | 
						|
  deltaNewtonExpected.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaNewtonExpected.insert(1, Vector_(2, .7, .8));
 | 
						|
 | 
						|
  VectorValues deltaRgExpected;
 | 
						|
  deltaRgExpected.insert(0, Vector_(3, .1, .2, .3));
 | 
						|
  deltaRgExpected.insert(1, Vector_(2, .7, .8));
 | 
						|
 | 
						|
  vector<bool> replacedKeysExpected(2, true);
 | 
						|
 | 
						|
  Ordering orderingExpected; orderingExpected += 100, 0;
 | 
						|
 | 
						|
  ISAM2::Nodes nodesExpected(2);
 | 
						|
 | 
						|
  // Reduce initial state
 | 
						|
  FastSet<Key> unusedKeys;
 | 
						|
  unusedKeys.insert(1);
 | 
						|
  vector<size_t> removedFactorsI; removedFactorsI.push_back(1);
 | 
						|
  SymbolicFactorGraph removedFactors; removedFactors.push_back(sfg[1]);
 | 
						|
  variableIndex.remove(removedFactorsI, removedFactors);
 | 
						|
  GaussianFactorGraph linearFactors;
 | 
						|
  FastSet<Key> fixedVariables;
 | 
						|
  ISAM2::Impl::RemoveVariables(unusedKeys, ISAM2::sharedClique(), theta, variableIndex, delta, deltaNewton, deltaRg,
 | 
						|
    replacedKeys, ordering, nodes, linearFactors, fixedVariables);
 | 
						|
 | 
						|
  EXPECT(assert_equal(thetaExpected, theta));
 | 
						|
  EXPECT(assert_equal(variableIndexExpected, variableIndex));
 | 
						|
  EXPECT(assert_equal(deltaExpected, delta));
 | 
						|
  EXPECT(assert_equal(deltaNewtonExpected, deltaNewton));
 | 
						|
  EXPECT(assert_equal(deltaRgExpected, deltaRg));
 | 
						|
  EXPECT(assert_container_equality(replacedKeysExpected, replacedKeys));
 | 
						|
  EXPECT(assert_equal(orderingExpected, ordering));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
//TEST(ISAM2, IndicesFromFactors) {
 | 
						|
//
 | 
						|
//  using namespace gtsam::planarSLAM;
 | 
						|
//  typedef GaussianISAM2<Values>::Impl Impl;
 | 
						|
//
 | 
						|
//  Ordering ordering; ordering += (0), (0), (1);
 | 
						|
//  NonlinearFactorGraph graph;
 | 
						|
//  graph.add(PriorFactor<Pose2>((0), Pose2(), noiseModel::Unit::Create(Pose2::dimension));
 | 
						|
//  graph.addRange((0), (0), 1.0, noiseModel::Unit::Create(1));
 | 
						|
//
 | 
						|
//  FastSet<Index> expected;
 | 
						|
//  expected.insert(0);
 | 
						|
//  expected.insert(1);
 | 
						|
//
 | 
						|
//  FastSet<Index> actual = Impl::IndicesFromFactors(ordering, graph);
 | 
						|
//
 | 
						|
//  EXPECT(assert_equal(expected, actual));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
//TEST(ISAM2, CheckRelinearization) {
 | 
						|
//
 | 
						|
//  typedef GaussianISAM2<Values>::Impl Impl;
 | 
						|
//
 | 
						|
//  // Create values where indices 1 and 3 are above the threshold of 0.1
 | 
						|
//  VectorValues values;
 | 
						|
//  values.reserve(4, 10);
 | 
						|
//  values.push_back_preallocated(Vector_(2, 0.09, 0.09));
 | 
						|
//  values.push_back_preallocated(Vector_(3, 0.11, 0.11, 0.09));
 | 
						|
//  values.push_back_preallocated(Vector_(3, 0.09, 0.09, 0.09));
 | 
						|
//  values.push_back_preallocated(Vector_(2, 0.11, 0.11));
 | 
						|
//
 | 
						|
//  // Create a permutation
 | 
						|
//  Permutation permutation(4);
 | 
						|
//  permutation[0] = 2;
 | 
						|
//  permutation[1] = 0;
 | 
						|
//  permutation[2] = 1;
 | 
						|
//  permutation[3] = 3;
 | 
						|
//
 | 
						|
//  Permuted<VectorValues> permuted(permutation, values);
 | 
						|
//
 | 
						|
//  // After permutation, the indices above the threshold are 2 and 2
 | 
						|
//  FastSet<Index> expected;
 | 
						|
//  expected.insert(2);
 | 
						|
//  expected.insert(3);
 | 
						|
//
 | 
						|
//  // Indices checked by CheckRelinearization
 | 
						|
//  FastSet<Index> actual = Impl::CheckRelinearization(permuted, 0.1);
 | 
						|
//
 | 
						|
//  EXPECT(assert_equal(expected, actual));
 | 
						|
//}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, optimize2) {
 | 
						|
 | 
						|
  // Create initialization
 | 
						|
  Values theta;
 | 
						|
  theta.insert((0), Pose2(0.01, 0.01, 0.01));
 | 
						|
 | 
						|
  // Create conditional
 | 
						|
  Vector d(3); d << -0.1, -0.1, -0.31831;
 | 
						|
  Matrix R(3,3); R <<
 | 
						|
      10,          0.0,          0.0,
 | 
						|
      0.0,           10,          0.0,
 | 
						|
      0.0,          0.0,   31.8309886;
 | 
						|
  GaussianConditional::shared_ptr conditional(new GaussianConditional(0, d, R, Vector::Ones(3)));
 | 
						|
 | 
						|
  // Create ordering
 | 
						|
  Ordering ordering; ordering += (0);
 | 
						|
 | 
						|
  // Expected vector
 | 
						|
  VectorValues expected(1, 3);
 | 
						|
  conditional->solveInPlace(expected);
 | 
						|
 | 
						|
  // Clique
 | 
						|
  ISAM2::sharedClique clique(
 | 
						|
      ISAM2::Clique::Create(make_pair(conditional,GaussianFactor::shared_ptr())));
 | 
						|
  VectorValues actual(theta.dims(ordering));
 | 
						|
  internal::optimizeInPlace<ISAM2::Base>(clique, actual);
 | 
						|
 | 
						|
//  expected.print("expected: ");
 | 
						|
//  actual.print("actual: ");
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool isam_check(const NonlinearFactorGraph& fullgraph, const Values& fullinit, const ISAM2& isam, Test& test, TestResult& result) {
 | 
						|
 | 
						|
  TestResult& result_ = result;
 | 
						|
  const std::string name_ = test.getName();
 | 
						|
 | 
						|
  Values actual = isam.calculateEstimate();
 | 
						|
  Ordering ordering = isam.getOrdering(); // *fullgraph.orderingCOLAMD(fullinit).first;
 | 
						|
  GaussianFactorGraph linearized = *fullgraph.linearize(fullinit, ordering);
 | 
						|
//  linearized.print("Expected linearized: ");
 | 
						|
  GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
 | 
						|
//  gbn.print("Expected bayesnet: ");
 | 
						|
  VectorValues delta = optimize(gbn);
 | 
						|
  Values expected = fullinit.retract(delta, ordering);
 | 
						|
 | 
						|
  bool isamEqual = assert_equal(expected, actual);
 | 
						|
 | 
						|
  // The following two checks make sure that the cached gradients are maintained and used correctly
 | 
						|
 | 
						|
  // Check gradient at each node
 | 
						|
  bool nodeGradientsOk = true;
 | 
						|
  typedef ISAM2::sharedClique sharedClique;
 | 
						|
  BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
 | 
						|
    // Compute expected gradient
 | 
						|
    FactorGraph<JacobianFactor> jfg;
 | 
						|
    jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
 | 
						|
    VectorValues expectedGradient(*allocateVectorValues(isam));
 | 
						|
    gradientAtZero(jfg, expectedGradient);
 | 
						|
    // Compare with actual gradients
 | 
						|
    int variablePosition = 0;
 | 
						|
    for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
 | 
						|
      const int dim = clique->conditional()->dim(jit);
 | 
						|
      Vector actual = clique->gradientContribution().segment(variablePosition, dim);
 | 
						|
      bool gradOk = assert_equal(expectedGradient[*jit], actual);
 | 
						|
      EXPECT(gradOk);
 | 
						|
      nodeGradientsOk = nodeGradientsOk && gradOk;
 | 
						|
      variablePosition += dim;
 | 
						|
    }
 | 
						|
    bool dimOk = clique->gradientContribution().rows() == variablePosition;
 | 
						|
    EXPECT(dimOk);
 | 
						|
    nodeGradientsOk = nodeGradientsOk && dimOk;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check gradient
 | 
						|
  VectorValues expectedGradient(*allocateVectorValues(isam));
 | 
						|
  gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
 | 
						|
  VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
 | 
						|
  VectorValues actualGradient(*allocateVectorValues(isam));
 | 
						|
  gradientAtZero(isam, actualGradient);
 | 
						|
  bool expectedGradOk = assert_equal(expectedGradient2, expectedGradient);
 | 
						|
  EXPECT(expectedGradOk);
 | 
						|
  bool totalGradOk = assert_equal(expectedGradient, actualGradient);
 | 
						|
  EXPECT(totalGradOk);
 | 
						|
 | 
						|
  return nodeGradientsOk && expectedGradOk && totalGradOk && isamEqual;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, slamlike_solution_gaussnewton)
 | 
						|
{
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, slamlike_solution_dogleg)
 | 
						|
{
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false));
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, slamlike_solution_gaussnewton_qr)
 | 
						|
{
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, false, ISAM2Params::QR));
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, slamlike_solution_dogleg_qr)
 | 
						|
{
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false, false, ISAM2Params::QR));
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, clone) {
 | 
						|
 | 
						|
  ISAM2 clone1;
 | 
						|
 | 
						|
  {
 | 
						|
    ISAM2 isam = createSlamlikeISAM2();
 | 
						|
    clone1 = isam;
 | 
						|
 | 
						|
    ISAM2 clone2(isam);
 | 
						|
 | 
						|
    // Modify original isam
 | 
						|
    NonlinearFactorGraph factors;
 | 
						|
    factors.add(BetweenFactor<Pose2>(0, 10,
 | 
						|
        isam.calculateEstimate<Pose2>(0).between(isam.calculateEstimate<Pose2>(10)), noiseModel::Unit::Create(3)));
 | 
						|
    isam.update(factors);
 | 
						|
 | 
						|
    CHECK(assert_equal(createSlamlikeISAM2(), clone2));
 | 
						|
  }
 | 
						|
 | 
						|
  // This is to (perhaps unsuccessfully) try to currupt unallocated memory referenced
 | 
						|
  // if the references in the iSAM2 copy point to the old instance which deleted at
 | 
						|
  // the end of the {...} section above.
 | 
						|
  ISAM2 temp = createSlamlikeISAM2();
 | 
						|
 | 
						|
  CHECK(assert_equal(createSlamlikeISAM2(), clone1));
 | 
						|
  CHECK(assert_equal(clone1, temp));
 | 
						|
 | 
						|
  // Check clone empty
 | 
						|
  ISAM2 isam;
 | 
						|
  clone1 = isam;
 | 
						|
  CHECK(assert_equal(ISAM2(), clone1));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, permute_cached) {
 | 
						|
  typedef boost::shared_ptr<ISAM2Clique> sharedISAM2Clique;
 | 
						|
 | 
						|
  // Construct expected permuted BayesTree (variable 2 has been changed to 1)
 | 
						|
  BayesTree<GaussianConditional, ISAM2Clique> expected;
 | 
						|
  expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
 | 
						|
      boost::make_shared<GaussianConditional>(pair_list_of
 | 
						|
          (3, Matrix_(1,1,1.0))
 | 
						|
          (4, Matrix_(1,1,2.0)),
 | 
						|
          2, Vector_(1,1.0), Vector_(1,1.0)),   // p(3,4)
 | 
						|
      HessianFactor::shared_ptr()))));          // Cached: empty
 | 
						|
  expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
 | 
						|
      boost::make_shared<GaussianConditional>(pair_list_of
 | 
						|
          (2, Matrix_(1,1,1.0))
 | 
						|
          (3, Matrix_(1,1,2.0)),
 | 
						|
          1, Vector_(1,1.0), Vector_(1,1.0)),     // p(2|3)
 | 
						|
      boost::make_shared<HessianFactor>(3, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(3)
 | 
						|
  expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
 | 
						|
      boost::make_shared<GaussianConditional>(pair_list_of
 | 
						|
          (0, Matrix_(1,1,1.0))
 | 
						|
          (2, Matrix_(1,1,2.0)),
 | 
						|
          1, Vector_(1,1.0), Vector_(1,1.0)),     // p(0|2)
 | 
						|
      boost::make_shared<HessianFactor>(1, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(1)
 | 
						|
  // Change variable 2 to 1
 | 
						|
  expected.root()->children().front()->conditional()->keys()[0] = 1;
 | 
						|
  expected.root()->children().front()->children().front()->conditional()->keys()[1] = 1;
 | 
						|
 | 
						|
  // Construct unpermuted BayesTree
 | 
						|
  BayesTree<GaussianConditional, ISAM2Clique> actual;
 | 
						|
  actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
 | 
						|
      boost::make_shared<GaussianConditional>(pair_list_of
 | 
						|
          (3, Matrix_(1,1,1.0))
 | 
						|
          (4, Matrix_(1,1,2.0)),
 | 
						|
          2, Vector_(1,1.0), Vector_(1,1.0)),   // p(3,4)
 | 
						|
      HessianFactor::shared_ptr()))));          // Cached: empty
 | 
						|
  actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
 | 
						|
      boost::make_shared<GaussianConditional>(pair_list_of
 | 
						|
          (2, Matrix_(1,1,1.0))
 | 
						|
          (3, Matrix_(1,1,2.0)),
 | 
						|
          1, Vector_(1,1.0), Vector_(1,1.0)),     // p(2|3)
 | 
						|
      boost::make_shared<HessianFactor>(3, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(3)
 | 
						|
  actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
 | 
						|
      boost::make_shared<GaussianConditional>(pair_list_of
 | 
						|
          (0, Matrix_(1,1,1.0))
 | 
						|
          (2, Matrix_(1,1,2.0)),
 | 
						|
          1, Vector_(1,1.0), Vector_(1,1.0)),     // p(0|2)
 | 
						|
      boost::make_shared<HessianFactor>(2, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(2)
 | 
						|
 | 
						|
  // Create permutation that changes variable 2 -> 0
 | 
						|
  Permutation permutation = Permutation::Identity(5);
 | 
						|
  permutation[2] = 1;
 | 
						|
 | 
						|
  // Permute BayesTree
 | 
						|
  actual.root()->permuteWithInverse(permutation);
 | 
						|
 | 
						|
  // Check
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, removeFactors)
 | 
						|
{
 | 
						|
  // This test builds a graph in the same way as the "slamlike" test above, but
 | 
						|
  // then removes the 2nd-to-last landmark measurement
 | 
						|
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
 | 
						|
 | 
						|
  // Remove the 2nd measurement on landmark 0 (Key 100)
 | 
						|
  FastVector<size_t> toRemove;
 | 
						|
  toRemove.push_back(12);
 | 
						|
  isam.update(NonlinearFactorGraph(), Values(), toRemove);
 | 
						|
 | 
						|
  // Remove the factor from the full system
 | 
						|
  fullgraph.remove(12);
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, removeVariables)
 | 
						|
{
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
 | 
						|
 | 
						|
  // Remove the measurement on landmark 0 (Key 100)
 | 
						|
  FastVector<size_t> toRemove;
 | 
						|
  toRemove.push_back(7);
 | 
						|
  toRemove.push_back(14);
 | 
						|
  isam.update(NonlinearFactorGraph(), Values(), toRemove);
 | 
						|
 | 
						|
  // Remove the factors and variable from the full system
 | 
						|
  fullgraph.remove(7);
 | 
						|
  fullgraph.remove(14);
 | 
						|
  fullinit.erase(100);
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, swapFactors)
 | 
						|
{
 | 
						|
  // This test builds a graph in the same way as the "slamlike" test above, but
 | 
						|
  // then swaps the 2nd-to-last landmark measurement with a different one
 | 
						|
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph);
 | 
						|
 | 
						|
  // Remove the measurement on landmark 0 and replace with a different one
 | 
						|
  {
 | 
						|
    size_t swap_idx = isam.getFactorsUnsafe().size()-2;
 | 
						|
    FastVector<size_t> toRemove;
 | 
						|
    toRemove.push_back(swap_idx);
 | 
						|
    fullgraph.remove(swap_idx);
 | 
						|
 | 
						|
    NonlinearFactorGraph swapfactors;
 | 
						|
//    swapfactors.add(BearingRange<Pose2,Point2>(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise); // original factor
 | 
						|
    swapfactors.add(BearingRangeFactor<Pose2,Point2>(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 5.0, brNoise));
 | 
						|
    fullgraph.push_back(swapfactors);
 | 
						|
    isam.update(swapfactors, Values(), toRemove);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  EXPECT(assert_equal(fullgraph, NonlinearFactorGraph(isam.getFactorsUnsafe())));
 | 
						|
  EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
 | 
						|
  // Check gradient at each node
 | 
						|
  typedef ISAM2::sharedClique sharedClique;
 | 
						|
  BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
 | 
						|
    // Compute expected gradient
 | 
						|
    FactorGraph<JacobianFactor> jfg;
 | 
						|
    jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
 | 
						|
    VectorValues expectedGradient(*allocateVectorValues(isam));
 | 
						|
    gradientAtZero(jfg, expectedGradient);
 | 
						|
    // Compare with actual gradients
 | 
						|
    int variablePosition = 0;
 | 
						|
    for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
 | 
						|
      const int dim = clique->conditional()->dim(jit);
 | 
						|
      Vector actual = clique->gradientContribution().segment(variablePosition, dim);
 | 
						|
      EXPECT(assert_equal(expectedGradient[*jit], actual));
 | 
						|
      variablePosition += dim;
 | 
						|
    }
 | 
						|
    EXPECT_LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check gradient
 | 
						|
  VectorValues expectedGradient(*allocateVectorValues(isam));
 | 
						|
  gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
 | 
						|
  VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
 | 
						|
  VectorValues actualGradient(*allocateVectorValues(isam));
 | 
						|
  gradientAtZero(isam, actualGradient);
 | 
						|
  EXPECT(assert_equal(expectedGradient2, expectedGradient));
 | 
						|
  EXPECT(assert_equal(expectedGradient, actualGradient));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, constrained_ordering)
 | 
						|
{
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
 | 
						|
  // We will constrain x3 and x4 to the end
 | 
						|
  FastMap<Key, int> constrained;
 | 
						|
  constrained.insert(make_pair((3), 1));
 | 
						|
  constrained.insert(make_pair((4), 2));
 | 
						|
 | 
						|
  // i keeps track of the time step
 | 
						|
  size_t i = 0;
 | 
						|
 | 
						|
  // Add a prior at time 0 and update isam
 | 
						|
  {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(PriorFactor<Pose2>(0, Pose2(0.0, 0.0, 0.0), odoNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((0), Pose2(0.01, 0.01, 0.01));
 | 
						|
    fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
 | 
						|
 | 
						|
    isam.update(newfactors, init);
 | 
						|
  }
 | 
						|
 | 
						|
  CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
 | 
						|
  // Add odometry from time 0 to time 5
 | 
						|
  for( ; i<5; ++i) {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
    fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
 | 
						|
    if(i >= 3)
 | 
						|
      isam.update(newfactors, init, FastVector<size_t>(), constrained);
 | 
						|
    else
 | 
						|
      isam.update(newfactors, init);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add odometry from time 5 to 6 and landmark measurement at time 5
 | 
						|
  {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    newfactors.add(BearingRangeFactor<Pose2,Point2>(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise));
 | 
						|
    newfactors.add(BearingRangeFactor<Pose2,Point2>(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((i+1), Pose2(1.01, 0.01, 0.01));
 | 
						|
    init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | 
						|
    init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | 
						|
    fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
 | 
						|
    fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | 
						|
    fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | 
						|
 | 
						|
    isam.update(newfactors, init, FastVector<size_t>(), constrained);
 | 
						|
    ++ i;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add odometry from time 6 to time 10
 | 
						|
  for( ; i<10; ++i) {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
    fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
 | 
						|
    isam.update(newfactors, init, FastVector<size_t>(), constrained);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add odometry from time 10 to 11 and landmark measurement at time 10
 | 
						|
  {
 | 
						|
    NonlinearFactorGraph newfactors;
 | 
						|
    newfactors.add(BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise));
 | 
						|
    newfactors.add(BearingRangeFactor<Pose2,Point2>(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
 | 
						|
    newfactors.add(BearingRangeFactor<Pose2,Point2>(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
    Values init;
 | 
						|
    init.insert((i+1), Pose2(6.9, 0.1, 0.01));
 | 
						|
    fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
 | 
						|
 | 
						|
    isam.update(newfactors, init, FastVector<size_t>(), constrained);
 | 
						|
    ++ i;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
 | 
						|
  // Check that x3 and x4 are last, but either can come before the other
 | 
						|
  EXPECT(isam.getOrdering()[(3)] == 12 && isam.getOrdering()[(4)] == 13);
 | 
						|
 | 
						|
  // Check gradient at each node
 | 
						|
  typedef ISAM2::sharedClique sharedClique;
 | 
						|
  BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
 | 
						|
    // Compute expected gradient
 | 
						|
    FactorGraph<JacobianFactor> jfg;
 | 
						|
    jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
 | 
						|
    VectorValues expectedGradient(*allocateVectorValues(isam));
 | 
						|
    gradientAtZero(jfg, expectedGradient);
 | 
						|
    // Compare with actual gradients
 | 
						|
    int variablePosition = 0;
 | 
						|
    for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
 | 
						|
      const int dim = clique->conditional()->dim(jit);
 | 
						|
      Vector actual = clique->gradientContribution().segment(variablePosition, dim);
 | 
						|
      EXPECT(assert_equal(expectedGradient[*jit], actual));
 | 
						|
      variablePosition += dim;
 | 
						|
    }
 | 
						|
    LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check gradient
 | 
						|
  VectorValues expectedGradient(*allocateVectorValues(isam));
 | 
						|
  gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
 | 
						|
  VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
 | 
						|
  VectorValues actualGradient(*allocateVectorValues(isam));
 | 
						|
  gradientAtZero(isam, actualGradient);
 | 
						|
  EXPECT(assert_equal(expectedGradient2, expectedGradient));
 | 
						|
  EXPECT(assert_equal(expectedGradient, actualGradient));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(ISAM2, slamlike_solution_partial_relinearization_check)
 | 
						|
{
 | 
						|
  // These variables will be reused and accumulate factors and values
 | 
						|
  Values fullinit;
 | 
						|
  NonlinearFactorGraph fullgraph;
 | 
						|
  ISAM2Params params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false);
 | 
						|
  params.enablePartialRelinearizationCheck = true;
 | 
						|
  ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, params);
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  bool checkMarginalizeLeaves(ISAM2& isam, const FastList<Key>& leafKeys) {
 | 
						|
    Matrix expectedAugmentedHessian, expected3AugmentedHessian;
 | 
						|
    vector<Index> toKeep;
 | 
						|
    const Index lastVar = isam.getOrdering().size() - 1;
 | 
						|
    for(Index i=0; i<=lastVar; ++i)
 | 
						|
      if(find(leafKeys.begin(), leafKeys.end(), isam.getOrdering().key(i)) == leafKeys.end())
 | 
						|
        toKeep.push_back(i);
 | 
						|
 | 
						|
    // Calculate expected marginal from iSAM2 tree
 | 
						|
    GaussianFactorGraph isamAsGraph(isam);
 | 
						|
    GaussianSequentialSolver solver(isamAsGraph);
 | 
						|
    GaussianFactorGraph marginalgfg = *solver.jointFactorGraph(toKeep);
 | 
						|
    expectedAugmentedHessian = marginalgfg.augmentedHessian();
 | 
						|
 | 
						|
    //// Calculate expected marginal from cached linear factors
 | 
						|
    //assert(isam.params().cacheLinearizedFactors);
 | 
						|
    //GaussianSequentialSolver solver2(isam.linearFactors_, isam.params().factorization == ISAM2Params::QR);
 | 
						|
    //expected2AugmentedHessian = solver2.jointFactorGraph(toKeep)->augmentedHessian();
 | 
						|
 | 
						|
    // Calculate expected marginal from original nonlinear factors
 | 
						|
    GaussianSequentialSolver solver3(
 | 
						|
      *isam.getFactorsUnsafe().linearize(isam.getLinearizationPoint(), isam.getOrdering()),
 | 
						|
      isam.params().factorization == ISAM2Params::QR);
 | 
						|
    expected3AugmentedHessian = solver3.jointFactorGraph(toKeep)->augmentedHessian();
 | 
						|
 | 
						|
    // Do marginalization
 | 
						|
    isam.marginalizeLeaves(leafKeys);
 | 
						|
 | 
						|
    // Check
 | 
						|
    GaussianFactorGraph actualMarginalGraph(isam);
 | 
						|
    Matrix actualAugmentedHessian = actualMarginalGraph.augmentedHessian();
 | 
						|
    //Matrix actual2AugmentedHessian = linearFactors_.augmentedHessian();
 | 
						|
    Matrix actual3AugmentedHessian = isam.getFactorsUnsafe().linearize(
 | 
						|
      isam.getLinearizationPoint(), isam.getOrdering())->augmentedHessian();
 | 
						|
    assert(actualAugmentedHessian.unaryExpr(std::ptr_fun(&std::isfinite<double>)).all());
 | 
						|
 | 
						|
    // Check full marginalization
 | 
						|
    //cout << "treeEqual" << endl;
 | 
						|
    bool treeEqual = assert_equal(expectedAugmentedHessian, actualAugmentedHessian, 1e-6);
 | 
						|
    //bool linEqual = assert_equal(expected2AugmentedHessian, actualAugmentedHessian, 1e-6);
 | 
						|
    //cout << "nonlinEqual" << endl;
 | 
						|
    bool nonlinEqual = assert_equal(expected3AugmentedHessian, actualAugmentedHessian, 1e-6);
 | 
						|
    //bool linCorrect = assert_equal(expected3AugmentedHessian, expected2AugmentedHessian, 1e-6);
 | 
						|
    //actual2AugmentedHessian.bottomRightCorner(1,1) = expected3AugmentedHessian.bottomRightCorner(1,1); bool afterLinCorrect = assert_equal(expected3AugmentedHessian, actual2AugmentedHessian, 1e-6);
 | 
						|
    //cout << "nonlinCorrect" << endl;
 | 
						|
    actual3AugmentedHessian.bottomRightCorner(1,1) = expected3AugmentedHessian.bottomRightCorner(1,1); bool afterNonlinCorrect = assert_equal(expected3AugmentedHessian, actual3AugmentedHessian, 1e-6);
 | 
						|
 | 
						|
    bool ok = treeEqual && /*linEqual &&*/ nonlinEqual && /*linCorrect &&*/ /*afterLinCorrect &&*/ afterNonlinCorrect;
 | 
						|
    return ok;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, marginalizeLeaves1)
 | 
						|
{
 | 
						|
  ISAM2 isam;
 | 
						|
 | 
						|
  NonlinearFactorGraph factors;
 | 
						|
  factors.add(PriorFactor<LieVector>(0, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  factors.add(BetweenFactor<LieVector>(0, 1, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(1, 2, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(0, 2, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  Values values;
 | 
						|
  values.insert(0, LieVector(0.0));
 | 
						|
  values.insert(1, LieVector(0.0));
 | 
						|
  values.insert(2, LieVector(0.0));
 | 
						|
 | 
						|
  FastMap<Key,int> constrainedKeys;
 | 
						|
  constrainedKeys.insert(make_pair(0,0));
 | 
						|
  constrainedKeys.insert(make_pair(1,1));
 | 
						|
  constrainedKeys.insert(make_pair(2,2));
 | 
						|
 | 
						|
  isam.update(factors, values, FastVector<size_t>(), constrainedKeys);
 | 
						|
 | 
						|
  FastList<Key> leafKeys;
 | 
						|
  leafKeys.push_back(isam.getOrdering().key(0));
 | 
						|
  EXPECT(checkMarginalizeLeaves(isam, leafKeys));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, marginalizeLeaves2)
 | 
						|
{
 | 
						|
  ISAM2 isam;
 | 
						|
 | 
						|
  NonlinearFactorGraph factors;
 | 
						|
  factors.add(PriorFactor<LieVector>(0, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  factors.add(BetweenFactor<LieVector>(0, 1, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(1, 2, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(0, 2, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(2, 3, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  Values values;
 | 
						|
  values.insert(0, LieVector(0.0));
 | 
						|
  values.insert(1, LieVector(0.0));
 | 
						|
  values.insert(2, LieVector(0.0));
 | 
						|
  values.insert(3, LieVector(0.0));
 | 
						|
 | 
						|
  FastMap<Key,int> constrainedKeys;
 | 
						|
  constrainedKeys.insert(make_pair(0,0));
 | 
						|
  constrainedKeys.insert(make_pair(1,1));
 | 
						|
  constrainedKeys.insert(make_pair(2,2));
 | 
						|
  constrainedKeys.insert(make_pair(3,3));
 | 
						|
 | 
						|
  isam.update(factors, values, FastVector<size_t>(), constrainedKeys);
 | 
						|
 | 
						|
  FastList<Key> leafKeys;
 | 
						|
  leafKeys.push_back(isam.getOrdering().key(0));
 | 
						|
  EXPECT(checkMarginalizeLeaves(isam, leafKeys));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, marginalizeLeaves3)
 | 
						|
{
 | 
						|
  ISAM2 isam;
 | 
						|
 | 
						|
  NonlinearFactorGraph factors;
 | 
						|
  factors.add(PriorFactor<LieVector>(0, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  factors.add(BetweenFactor<LieVector>(0, 1, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(1, 2, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(0, 2, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  factors.add(BetweenFactor<LieVector>(2, 3, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  factors.add(BetweenFactor<LieVector>(3, 4, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(4, 5, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(3, 5, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  Values values;
 | 
						|
  values.insert(0, LieVector(0.0));
 | 
						|
  values.insert(1, LieVector(0.0));
 | 
						|
  values.insert(2, LieVector(0.0));
 | 
						|
  values.insert(3, LieVector(0.0));
 | 
						|
  values.insert(4, LieVector(0.0));
 | 
						|
  values.insert(5, LieVector(0.0));
 | 
						|
 | 
						|
  FastMap<Key,int> constrainedKeys;
 | 
						|
  constrainedKeys.insert(make_pair(0,0));
 | 
						|
  constrainedKeys.insert(make_pair(1,1));
 | 
						|
  constrainedKeys.insert(make_pair(2,2));
 | 
						|
  constrainedKeys.insert(make_pair(3,3));
 | 
						|
  constrainedKeys.insert(make_pair(4,4));
 | 
						|
  constrainedKeys.insert(make_pair(5,5));
 | 
						|
 | 
						|
  isam.update(factors, values, FastVector<size_t>(), constrainedKeys);
 | 
						|
 | 
						|
  FastList<Key> leafKeys;
 | 
						|
  leafKeys.push_back(isam.getOrdering().key(0));
 | 
						|
  EXPECT(checkMarginalizeLeaves(isam, leafKeys));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, marginalizeLeaves4)
 | 
						|
{
 | 
						|
  ISAM2 isam;
 | 
						|
 | 
						|
  NonlinearFactorGraph factors;
 | 
						|
  factors.add(PriorFactor<LieVector>(0, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(0, 2, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
  factors.add(BetweenFactor<LieVector>(1, 2, LieVector(0.0), noiseModel::Unit::Create(1)));
 | 
						|
 | 
						|
  Values values;
 | 
						|
  values.insert(0, LieVector(0.0));
 | 
						|
  values.insert(1, LieVector(0.0));
 | 
						|
  values.insert(2, LieVector(0.0));
 | 
						|
 | 
						|
  FastMap<Key,int> constrainedKeys;
 | 
						|
  constrainedKeys.insert(make_pair(0,0));
 | 
						|
  constrainedKeys.insert(make_pair(1,1));
 | 
						|
  constrainedKeys.insert(make_pair(2,2));
 | 
						|
 | 
						|
  isam.update(factors, values, FastVector<size_t>(), constrainedKeys);
 | 
						|
 | 
						|
  FastList<Key> leafKeys;
 | 
						|
  leafKeys.push_back(isam.getOrdering().key(1));
 | 
						|
  EXPECT(checkMarginalizeLeaves(isam, leafKeys));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST_UNSAFE(ISAM2, marginalizeLeaves5)
 | 
						|
{
 | 
						|
  // Create isam2
 | 
						|
  ISAM2 isam = createSlamlikeISAM2();
 | 
						|
 | 
						|
  // Marginalize
 | 
						|
  FastList<Key> marginalizeKeys;
 | 
						|
  marginalizeKeys.push_back(isam.getOrdering().key(0));
 | 
						|
  EXPECT(checkMarginalizeLeaves(isam, marginalizeKeys));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |