210 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file   Hybrid_City10000.cpp
 | |
|  * @brief  Example of using hybrid estimation
 | |
|  *         with multiple odometry measurements.
 | |
|  * @author Varun Agrawal
 | |
|  * @date   January 22, 2025
 | |
|  */
 | |
| 
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/slam/dataset.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #include <boost/algorithm/string/classification.hpp>
 | |
| #include <boost/algorithm/string/split.hpp>
 | |
| #include <fstream>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost::algorithm;
 | |
| 
 | |
| using symbol_shorthand::X;
 | |
| 
 | |
| // Testing params
 | |
| const size_t max_loop_count = 2000;  // 200 //2000 //8000
 | |
| 
 | |
| const bool is_with_ambiguity = false;  // run original iSAM2 without ambiguities
 | |
| // const bool is_with_ambiguity = true;  // run original iSAM2 with ambiguities
 | |
| 
 | |
| noiseModel::Diagonal::shared_ptr prior_noise_model =
 | |
|     noiseModel::Diagonal::Sigmas(
 | |
|         (Vector(3) << 0.0001, 0.0001, 0.0001).finished());
 | |
| 
 | |
| noiseModel::Diagonal::shared_ptr pose_noise_model =
 | |
|     noiseModel::Diagonal::Sigmas(
 | |
|         (Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
 | |
| 
 | |
| /**
 | |
|  * @brief Write the results of optimization to filename.
 | |
|  *
 | |
|  * @param results The Values object with the final results.
 | |
|  * @param num_poses The number of poses to write to the file.
 | |
|  * @param filename The file name to save the results to.
 | |
|  */
 | |
| void write_results(const Values& results, size_t num_poses,
 | |
|                    const std::string& filename = "ISAM2_city10000.txt") {
 | |
|   ofstream outfile;
 | |
|   outfile.open(filename);
 | |
| 
 | |
|   for (size_t i = 0; i < num_poses; ++i) {
 | |
|     Pose2 out_pose = results.at<Pose2>(X(i));
 | |
| 
 | |
|     outfile << out_pose.x() << " " << out_pose.y() << " " << out_pose.theta()
 | |
|             << std::endl;
 | |
|   }
 | |
|   outfile.close();
 | |
|   std::cout << "output written to " << filename << std::endl;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
|   ifstream in(findExampleDataFile("T1_city10000_04.txt"));
 | |
|   // ifstream in("../data/mh_T1_city10000_04.txt"); //Type #1 only
 | |
|   // ifstream in("../data/mh_T3b_city10000_10.txt"); //Type #3 only
 | |
|   // ifstream in("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + Type #3
 | |
| 
 | |
|   // ifstream in("../data/mh_All_city10000_groundtruth.txt");
 | |
| 
 | |
|   size_t pose_count = 0;
 | |
|   size_t index = 0;
 | |
| 
 | |
|   std::list<double> time_list;
 | |
| 
 | |
|   ISAM2Params parameters;
 | |
|   parameters.optimizationParams = gtsam::ISAM2GaussNewtonParams(0.0);
 | |
|   parameters.relinearizeThreshold = 0.01;
 | |
|   parameters.relinearizeSkip = 1;
 | |
| 
 | |
|   ISAM2* isam2 = new ISAM2(parameters);
 | |
| 
 | |
|   NonlinearFactorGraph* graph = new NonlinearFactorGraph();
 | |
| 
 | |
|   Values init_values;
 | |
|   Values results;
 | |
| 
 | |
|   double x = 0.0;
 | |
|   double y = 0.0;
 | |
|   double rad = 0.0;
 | |
| 
 | |
|   Pose2 prior_pose(x, y, rad);
 | |
| 
 | |
|   init_values.insert(X(0), prior_pose);
 | |
|   pose_count++;
 | |
| 
 | |
|   graph->addPrior<Pose2>(X(0), prior_pose, prior_noise_model);
 | |
| 
 | |
|   isam2->update(*graph, init_values);
 | |
|   graph->resize(0);
 | |
|   init_values.clear();
 | |
|   results = isam2->calculateBestEstimate();
 | |
| 
 | |
|   //*
 | |
|   size_t key_s = 0;
 | |
|   size_t key_t = 0;
 | |
| 
 | |
|   clock_t start_time = clock();
 | |
|   string str;
 | |
|   while (getline(in, str) && index < max_loop_count) {
 | |
|     // cout << str << endl;
 | |
|     vector<string> parts;
 | |
|     split(parts, str, is_any_of(" "));
 | |
| 
 | |
|     key_s = stoi(parts[1]);
 | |
|     key_t = stoi(parts[3]);
 | |
| 
 | |
|     int num_measurements = stoi(parts[5]);
 | |
|     vector<Pose2> pose_array(num_measurements);
 | |
|     for (int i = 0; i < num_measurements; ++i) {
 | |
|       x = stod(parts[6 + 3 * i]);
 | |
|       y = stod(parts[7 + 3 * i]);
 | |
|       rad = stod(parts[8 + 3 * i]);
 | |
|       pose_array[i] = Pose2(x, y, rad);
 | |
|     }
 | |
| 
 | |
|     Pose2 odom_pose;
 | |
|     if (is_with_ambiguity) {
 | |
|       // Get wrong intentionally
 | |
|       int id = index % num_measurements;
 | |
|       odom_pose = Pose2(pose_array[id]);
 | |
|     } else {
 | |
|       odom_pose = pose_array[0];
 | |
|     }
 | |
| 
 | |
|     if (key_s == key_t - 1) {  // new X(key)
 | |
|       init_values.insert(X(key_t), results.at<Pose2>(X(key_s)) * odom_pose);
 | |
|       pose_count++;
 | |
|     } else {  // loop
 | |
|       index++;
 | |
|     }
 | |
|     graph->add(
 | |
|         BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose, pose_noise_model));
 | |
| 
 | |
|     isam2->update(*graph, init_values);
 | |
|     graph->resize(0);
 | |
|     init_values.clear();
 | |
|     results = isam2->calculateBestEstimate();
 | |
| 
 | |
|     // Print loop index and time taken in processor clock ticks
 | |
|     if (index % 50 == 0 && key_s != key_t - 1) {
 | |
|       std::cout << "index: " << index << std::endl;
 | |
|       std::cout << "acc_time:  " << time_list.back() / CLOCKS_PER_SEC
 | |
|                 << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (key_s == key_t - 1) {
 | |
|       clock_t cur_time = clock();
 | |
|       time_list.push_back(cur_time - start_time);
 | |
|     }
 | |
| 
 | |
|     if (time_list.size() % 100 == 0 && (key_s == key_t - 1)) {
 | |
|       string step_file_idx = std::to_string(100000 + time_list.size());
 | |
| 
 | |
|       ofstream step_outfile;
 | |
|       string step_file_name = "step_files/ISAM2_city10000_S" + step_file_idx;
 | |
|       step_outfile.open(step_file_name + ".txt");
 | |
|       for (size_t i = 0; i < (key_t + 1); ++i) {
 | |
|         Pose2 out_pose = results.at<Pose2>(X(i));
 | |
|         step_outfile << out_pose.x() << " " << out_pose.y() << " "
 | |
|                      << out_pose.theta() << endl;
 | |
|       }
 | |
|       step_outfile.close();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   clock_t end_time = clock();
 | |
|   clock_t total_time = end_time - start_time;
 | |
|   cout << "total_time: " << total_time / CLOCKS_PER_SEC << endl;
 | |
| 
 | |
|   /// Write results to file
 | |
|   write_results(results, (key_t + 1));
 | |
| 
 | |
|   ofstream outfile_time;
 | |
|   std::string time_file_name = "ISAM2_city10000_time.txt";
 | |
|   outfile_time.open(time_file_name);
 | |
|   for (auto acc_time : time_list) {
 | |
|     outfile_time << acc_time << std::endl;
 | |
|   }
 | |
|   outfile_time.close();
 | |
|   cout << "output " << time_file_name << " file." << endl;
 | |
| 
 | |
|   return 0;
 | |
| }
 |