380 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  *  @file   testGaussianFactor.cpp
 | |
|  *  @brief  Unit tests for Linear Factor
 | |
|  *  @author Christian Potthast
 | |
|  *  @author Frank Dellaert
 | |
|  **/
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| #include <boost/assign/std/set.hpp>
 | |
| #include <boost/assign/std/map.hpp> // for insert
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #define GTSAM_MAGIC_KEY
 | |
| 
 | |
| #include "Matrix.h"
 | |
| #include "Ordering.h"
 | |
| #include "GaussianConditional.h"
 | |
| #include "inference-inl.h"
 | |
| #include "smallExample.h"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| using namespace boost;
 | |
| 
 | |
| static SharedDiagonal
 | |
| 	sigma0_1 = sharedSigma(2,0.1), sigma_02 = sharedSigma(2,0.2),
 | |
| 	constraintModel = noiseModel::Constrained::All(2);
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, linearFactor )
 | |
| {
 | |
| 	Matrix I = eye(2);
 | |
| 	Vector b = Vector_(2, 2.0, -1.0);
 | |
| 	GaussianFactor expected("x1", -10*I,"x2", 10*I, b, noiseModel::Unit::Create(2));
 | |
| 
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	GaussianFactor::shared_ptr lf = fg[1];
 | |
| 
 | |
| 	// check if the two factors are the same
 | |
| 	CHECK(assert_equal(expected,*lf));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, keys )
 | |
| {
 | |
| 	// get the factor "f2" from the small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 	GaussianFactor::shared_ptr lf = fg[1];
 | |
| 	list<Symbol> expected;
 | |
| 	expected.push_back("x1");
 | |
| 	expected.push_back("x2");
 | |
| 	CHECK(lf->keys() == expected);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, dimensions )
 | |
| {
 | |
|   // get the factor "f2" from the small linear factor graph
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   // Check a single factor
 | |
|   Dimensions expected;
 | |
|   insert(expected)("x1", 2)("x2", 2);
 | |
|   Dimensions actual = fg[1]->dimensions();
 | |
|   CHECK(expected==actual);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, getDim )
 | |
| {
 | |
| 	// get a factor
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 	GaussianFactor::shared_ptr factor = fg[0];
 | |
| 
 | |
| 	// get the size of a variable
 | |
| 	size_t actual = factor->getDim("x1");
 | |
| 
 | |
| 	// verify
 | |
| 	size_t expected = 2;
 | |
| 	CHECK(actual == expected);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, combine )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get two factors from it and insert the factors into a vector
 | |
| 	vector<GaussianFactor::shared_ptr> lfg;
 | |
| 	lfg.push_back(fg[4 - 1]);
 | |
| 	lfg.push_back(fg[2 - 1]);
 | |
| 
 | |
| 	// combine in a factor
 | |
| 	GaussianFactor combined(lfg);
 | |
| 
 | |
| 	// sigmas
 | |
| 	double sigma2 = 0.1;
 | |
| 	double sigma4 = 0.2;
 | |
| 	Vector sigmas = Vector_(4, sigma4, sigma4, sigma2, sigma2);
 | |
| 
 | |
| 	// the expected combined linear factor
 | |
| 	Matrix Ax2 = Matrix_(4, 2, // x2
 | |
| 			-5., 0.,
 | |
| 			+0., -5.,
 | |
| 			10., 0.,
 | |
| 			+0., 10.);
 | |
| 
 | |
| 	Matrix Al1 = Matrix_(4, 2,	// l1
 | |
| 			5., 0.,
 | |
| 			0., 5.,
 | |
| 			0., 0.,
 | |
| 			0., 0.);
 | |
| 
 | |
| 	Matrix Ax1 = Matrix_(4, 2,	// x1
 | |
| 			0.00, 0., // f4
 | |
| 			0.00, 0., // f4
 | |
| 			-10., 0., // f2
 | |
| 			0.00, -10. // f2
 | |
| 	);
 | |
| 
 | |
| 	// the RHS
 | |
| 	Vector b2(4);
 | |
| 	b2(0) = -1.0;
 | |
| 	b2(1) =  1.5;
 | |
| 	b2(2) =  2.0;
 | |
| 	b2(3) = -1.0;
 | |
| 
 | |
| 	// use general constructor for making arbitrary factors
 | |
| 	vector<pair<Symbol, Matrix> > meas;
 | |
| 	meas.push_back(make_pair("x2", Ax2));
 | |
| 	meas.push_back(make_pair("l1", Al1));
 | |
| 	meas.push_back(make_pair("x1", Ax1));
 | |
| 	GaussianFactor expected(meas, b2, noiseModel::Diagonal::Sigmas(ones(4)));
 | |
| 	CHECK(assert_equal(expected,combined));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, error )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the first factor from the factor graph
 | |
| 	GaussianFactor::shared_ptr lf = fg[0];
 | |
| 
 | |
| 	// check the error of the first factor with noisy config
 | |
| 	VectorConfig cfg = createZeroDelta();
 | |
| 
 | |
| 	// calculate the error from the factor "f1"
 | |
| 	// note the error is the same as in testNonlinearFactor
 | |
| 	double actual = lf->error(cfg);
 | |
| 	DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, eliminate )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get two factors from it and insert the factors into a vector
 | |
| 	vector<GaussianFactor::shared_ptr> lfg;
 | |
| 	lfg.push_back(fg[4 - 1]);
 | |
| 	lfg.push_back(fg[2 - 1]);
 | |
| 
 | |
| 	// combine in a factor
 | |
| 	GaussianFactor combined(lfg);
 | |
| 
 | |
| 	// eliminate the combined factor
 | |
| 	GaussianConditional::shared_ptr actualCG;
 | |
| 	GaussianFactor::shared_ptr actualLF;
 | |
| 	boost::tie(actualCG,actualLF) = combined.eliminate("x2");
 | |
| 
 | |
| 	// create expected Conditional Gaussian
 | |
| 	Matrix I = eye(2)*sqrt(125.0);
 | |
| 	Matrix R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | |
| 	Vector d = I*Vector_(2,0.2,-0.14);
 | |
| 
 | |
| 	// Check the conditional Gaussian
 | |
| 	GaussianConditional
 | |
| 	expectedCG("x2", d, R11, "l1", S12, "x1", S13, repeat(2, 1.0));
 | |
| 
 | |
| 	// the expected linear factor
 | |
| 	I = eye(2)/0.2236;
 | |
| 	Matrix Bl1 = I, Bx1 = -I;
 | |
| 	Vector b1 = I*Vector_(2,0.0,0.2);
 | |
| 
 | |
| 	GaussianFactor expectedLF("l1", Bl1, "x1", Bx1, b1, repeat(2,1.0));
 | |
| 
 | |
| 	// check if the result matches
 | |
| 	CHECK(assert_equal(expectedCG,*actualCG,1e-3));
 | |
| 	CHECK(assert_equal(expectedLF,*actualLF,1e-3));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, matrix )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
 | |
| 	Vector b2 = Vector_(2, 0.2, -0.1);
 | |
| 	Matrix I = eye(2);
 | |
| 	GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1","x2";
 | |
| 
 | |
| 	// Test whitened version
 | |
| 	Matrix A_act1; Vector b_act1;
 | |
| 	boost::tie(A_act1,b_act1) = lf->matrix(ord, true);
 | |
| 
 | |
| 	Matrix A1 = Matrix_(2,4,
 | |
| 			-10.0,  0.0, 10.0,  0.0,
 | |
| 			000.0,-10.0,  0.0, 10.0 );
 | |
| 	Vector b1 = Vector_(2, 2.0, -1.0);
 | |
| 
 | |
| 	EQUALITY(A_act1,A1);
 | |
| 	EQUALITY(b_act1,b1);
 | |
| 
 | |
| 	// Test unwhitened version
 | |
| 	Matrix A_act2; Vector b_act2;
 | |
| 	boost::tie(A_act2,b_act2) = lf->matrix(ord, false);
 | |
| 
 | |
| 
 | |
| 	Matrix A2 = Matrix_(2,4,
 | |
| 			-1.0,  0.0, 1.0,  0.0,
 | |
| 			000.0,-1.0,  0.0, 1.0 );
 | |
| 	//Vector b2 = Vector_(2, 2.0, -1.0);
 | |
| 
 | |
| 	EQUALITY(A_act2,A2);
 | |
| 	EQUALITY(b_act2,b2);
 | |
| 
 | |
| 	// Ensure that whitening is consistent
 | |
| 	shared_ptr<noiseModel::Gaussian> model = lf->get_model();
 | |
| 	model->WhitenSystem(A_act2, b_act2);
 | |
| 	EQUALITY(A_act1, A_act2);
 | |
| 	EQUALITY(b_act1, b_act2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, matrix_aug )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	//GaussianFactor::shared_ptr lf = fg[1];
 | |
| 	Vector b2 = Vector_(2, 0.2, -0.1);
 | |
| 	Matrix I = eye(2);
 | |
| 	GaussianFactor::shared_ptr lf(new GaussianFactor("x1", -I, "x2", I, b2, sigma0_1));
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1","x2";
 | |
| 
 | |
| 	// Test unwhitened version
 | |
| 	Matrix Ab_act1;
 | |
| 	Ab_act1 = lf->matrix_augmented(ord, false);
 | |
| 
 | |
| 	Matrix Ab1 = Matrix_(2,5,
 | |
| 			-1.0,  0.0, 1.0,  0.0,  0.2,
 | |
| 			00.0,- 1.0, 0.0,  1.0, -0.1 );
 | |
| 
 | |
| 	EQUALITY(Ab_act1,Ab1);
 | |
| 
 | |
| 	// Test whitened version
 | |
| 	Matrix Ab_act2;
 | |
| 	Ab_act2 = lf->matrix_augmented(ord, true);
 | |
| 
 | |
| 	Matrix Ab2 = Matrix_(2,5,
 | |
| 		   -10.0,  0.0, 10.0,  0.0,  2.0,
 | |
| 			00.0, -10.0,  0.0, 10.0, -1.0 );
 | |
| 
 | |
| 	EQUALITY(Ab_act2,Ab2);
 | |
| 
 | |
| 	// Ensure that whitening is consistent
 | |
| 	shared_ptr<noiseModel::Gaussian> model = lf->get_model();
 | |
| 	model->WhitenInPlace(Ab_act1);
 | |
| 	EQUALITY(Ab_act1, Ab_act2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // small aux. function to print out lists of anything
 | |
| template<class T>
 | |
| void print(const list<T>& i) {
 | |
| 	copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
 | |
| 	cout << endl;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, sparse )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	GaussianFactor::shared_ptr lf = fg[1];
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1","x2";
 | |
| 
 | |
| 	list<int> i,j;
 | |
| 	list<double> s;
 | |
| 	boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
 | |
| 
 | |
| 	list<int> i1,j1;
 | |
| 	i1 += 1,2,1,2;
 | |
| 	j1 += 1,2,3,4;
 | |
| 
 | |
| 	list<double> s1;
 | |
| 	s1 += -10,-10,10,10;
 | |
| 
 | |
| 	CHECK(i==i1);
 | |
| 	CHECK(j==j1);
 | |
| 	CHECK(s==s1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, sparse2 )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get the factor "f2" from the factor graph
 | |
| 	GaussianFactor::shared_ptr lf = fg[1];
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x2","l1","x1";
 | |
| 
 | |
| 	list<int> i,j;
 | |
| 	list<double> s;
 | |
| 	boost::tie(i,j,s) = lf->sparse(fg.columnIndices(ord));
 | |
| 
 | |
| 	list<int> i1,j1;
 | |
| 	i1 += 1,2,1,2;
 | |
| 	j1 += 5,6,1,2;
 | |
| 
 | |
| 	list<double> s1;
 | |
| 	s1 += -10,-10,10,10;
 | |
| 
 | |
| 	CHECK(i==i1);
 | |
| 	CHECK(j==j1);
 | |
| 	CHECK(s==s1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactor, size )
 | |
| {
 | |
| 	// create a linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get some factors from the graph
 | |
| 	boost::shared_ptr<GaussianFactor> factor1 = fg[0];
 | |
| 	boost::shared_ptr<GaussianFactor> factor2 = fg[1];
 | |
| 	boost::shared_ptr<GaussianFactor> factor3 = fg[2];
 | |
| 
 | |
| 	CHECK(factor1->size() == 1);
 | |
| 	CHECK(factor2->size() == 2);
 | |
| 	CHECK(factor3->size() == 2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |