595 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			595 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    BatchFixedLagSmoother.cpp
 | 
						|
 * @brief   An LM-based fixed-lag smoother.
 | 
						|
 *
 | 
						|
 * @author  Michael Kaess, Stephen Williams
 | 
						|
 * @date    Oct 14, 2012
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
 | 
						|
#include <gtsam/nonlinear/LinearContainerFactor.h>
 | 
						|
#include <gtsam/linear/GaussianJunctionTree.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/linear/GaussianFactor.h>
 | 
						|
//#include <gtsam/inference/inference.h>
 | 
						|
#include <gtsam/base/debug.h>
 | 
						|
 | 
						|
namespace gtsam {
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::print(const std::string& s,
 | 
						|
    const KeyFormatter& keyFormatter) const {
 | 
						|
  FixedLagSmoother::print(s, keyFormatter);
 | 
						|
  // TODO: What else to print?
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs,
 | 
						|
    double tol) const {
 | 
						|
  const BatchFixedLagSmoother* e =
 | 
						|
      dynamic_cast<const BatchFixedLagSmoother*>(&rhs);
 | 
						|
  return e != NULL && FixedLagSmoother::equals(*e, tol)
 | 
						|
      && factors_.equals(e->factors_, tol) && theta_.equals(e->theta_, tol);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
Matrix BatchFixedLagSmoother::marginalCovariance(Key key) const {
 | 
						|
  throw std::runtime_error(
 | 
						|
      "BatchFixedLagSmoother::marginalCovariance not implemented");
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
FixedLagSmoother::Result BatchFixedLagSmoother::update(
 | 
						|
    const NonlinearFactorGraph& newFactors, const Values& newTheta,
 | 
						|
    const KeyTimestampMap& timestamps) {
 | 
						|
 | 
						|
  const bool debug = ISDEBUG("BatchFixedLagSmoother update");
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::update() START" << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update all of the internal variables with the new information
 | 
						|
  gttic(augment_system);
 | 
						|
  // Add the new variables to theta
 | 
						|
  theta_.insert(newTheta);
 | 
						|
  // Add new variables to the end of the ordering
 | 
						|
  BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
 | 
						|
    ordering_.push_back(key_value.key);
 | 
						|
  }
 | 
						|
  // Augment Delta
 | 
						|
  delta_.insert(newTheta.zeroVectors());
 | 
						|
 | 
						|
  // Add the new factors to the graph, updating the variable index
 | 
						|
  insertFactors(newFactors);
 | 
						|
  gttoc(augment_system);
 | 
						|
 | 
						|
  // Update the Timestamps associated with the factor keys
 | 
						|
  updateKeyTimestampMap(timestamps);
 | 
						|
 | 
						|
  // Get current timestamp
 | 
						|
  double current_timestamp = getCurrentTimestamp();
 | 
						|
  if (debug)
 | 
						|
    std::cout << "Current Timestamp: " << current_timestamp << std::endl;
 | 
						|
 | 
						|
  // Find the set of variables to be marginalized out
 | 
						|
  std::set<Key> marginalizableKeys = findKeysBefore(
 | 
						|
      current_timestamp - smootherLag_);
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "Marginalizable Keys: ";
 | 
						|
    BOOST_FOREACH(Key key, marginalizableKeys) {
 | 
						|
      std::cout << DefaultKeyFormatter(key) << " ";
 | 
						|
    }
 | 
						|
    std::cout << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reorder
 | 
						|
  gttic(reorder);
 | 
						|
  reorder(marginalizableKeys);
 | 
						|
  gttoc(reorder);
 | 
						|
 | 
						|
  // Optimize
 | 
						|
  gttic(optimize);
 | 
						|
  Result result;
 | 
						|
  if (factors_.size() > 0) {
 | 
						|
    result = optimize();
 | 
						|
  }
 | 
						|
  gttoc(optimize);
 | 
						|
 | 
						|
  // Marginalize out old variables.
 | 
						|
  gttic(marginalize);
 | 
						|
  if (marginalizableKeys.size() > 0) {
 | 
						|
    marginalize(marginalizableKeys);
 | 
						|
  }
 | 
						|
  gttoc(marginalize);
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::update() FINISH" << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::insertFactors(
 | 
						|
    const NonlinearFactorGraph& newFactors) {
 | 
						|
  BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, newFactors) {
 | 
						|
    Key index;
 | 
						|
    // Insert the factor into an existing hole in the factor graph, if possible
 | 
						|
    if (availableSlots_.size() > 0) {
 | 
						|
      index = availableSlots_.front();
 | 
						|
      availableSlots_.pop();
 | 
						|
      factors_.replace(index, factor);
 | 
						|
    } else {
 | 
						|
      index = factors_.size();
 | 
						|
      factors_.push_back(factor);
 | 
						|
    }
 | 
						|
    // Update the FactorIndex
 | 
						|
    BOOST_FOREACH(Key key, *factor) {
 | 
						|
      factorIndex_[key].insert(index);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::removeFactors(
 | 
						|
    const std::set<size_t>& deleteFactors) {
 | 
						|
  BOOST_FOREACH(size_t slot, deleteFactors) {
 | 
						|
    if (factors_.at(slot)) {
 | 
						|
      // Remove references to this factor from the FactorIndex
 | 
						|
      BOOST_FOREACH(Key key, *(factors_.at(slot))) {
 | 
						|
        factorIndex_[key].erase(slot);
 | 
						|
      }
 | 
						|
      // Remove the factor from the factor graph
 | 
						|
      factors_.remove(slot);
 | 
						|
      // Add the factor's old slot to the list of available slots
 | 
						|
      availableSlots_.push(slot);
 | 
						|
    } else {
 | 
						|
      // TODO: Throw an error??
 | 
						|
      std::cout << "Attempting to remove a factor from slot " << slot
 | 
						|
          << ", but it is already NULL." << std::endl;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::eraseKeys(const std::set<Key>& keys) {
 | 
						|
 | 
						|
  BOOST_FOREACH(Key key, keys) {
 | 
						|
    // Erase the key from the values
 | 
						|
    theta_.erase(key);
 | 
						|
 | 
						|
    // Erase the key from the factor index
 | 
						|
    factorIndex_.erase(key);
 | 
						|
 | 
						|
    // Erase the key from the set of linearized keys
 | 
						|
    if (linearKeys_.exists(key)) {
 | 
						|
      linearKeys_.erase(key);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  eraseKeyTimestampMap(keys);
 | 
						|
 | 
						|
  // Remove marginalized keys from the ordering and delta
 | 
						|
  BOOST_FOREACH(Key key, keys) {
 | 
						|
    ordering_.erase(std::find(ordering_.begin(), ordering_.end(), key));
 | 
						|
    delta_.erase(key);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::reorder(const std::set<Key>& marginalizeKeys) {
 | 
						|
 | 
						|
  const bool debug = ISDEBUG("BatchFixedLagSmoother reorder");
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::reorder() START" << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "Marginalizable Keys: ";
 | 
						|
    BOOST_FOREACH(Key key, marginalizeKeys) {
 | 
						|
      std::cout << DefaultKeyFormatter(key) << " ";
 | 
						|
    }
 | 
						|
    std::cout << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
 | 
						|
  ordering_ = Ordering::ColamdConstrainedFirst(factors_,
 | 
						|
      std::vector<Key>(marginalizeKeys.begin(), marginalizeKeys.end()));
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    ordering_.print("New Ordering: ");
 | 
						|
  }
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::reorder() FINISH" << std::endl;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
 | 
						|
 | 
						|
  const bool debug = ISDEBUG("BatchFixedLagSmoother optimize");
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::optimize() START" << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create output result structure
 | 
						|
  Result result;
 | 
						|
  result.nonlinearVariables = theta_.size() - linearKeys_.size();
 | 
						|
  result.linearVariables = linearKeys_.size();
 | 
						|
 | 
						|
  // Set optimization parameters
 | 
						|
  double lambda = parameters_.lambdaInitial;
 | 
						|
  double lambdaFactor = parameters_.lambdaFactor;
 | 
						|
  double lambdaUpperBound = parameters_.lambdaUpperBound;
 | 
						|
  double lambdaLowerBound = 1.0e-10;
 | 
						|
  size_t maxIterations = parameters_.maxIterations;
 | 
						|
  double relativeErrorTol = parameters_.relativeErrorTol;
 | 
						|
  double absoluteErrorTol = parameters_.absoluteErrorTol;
 | 
						|
  double errorTol = parameters_.errorTol;
 | 
						|
 | 
						|
  // Create a Values that holds the current evaluation point
 | 
						|
  Values evalpoint = theta_.retract(delta_);
 | 
						|
  result.error = factors_.error(evalpoint);
 | 
						|
 | 
						|
  // check if we're already close enough
 | 
						|
  if (result.error <= errorTol) {
 | 
						|
    if (debug) {
 | 
						|
      std::cout << "BatchFixedLagSmoother::optimize  Exiting, as error = "
 | 
						|
          << result.error << " < " << errorTol << std::endl;
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::optimize  linearValues: "
 | 
						|
        << linearKeys_.size() << std::endl;
 | 
						|
    std::cout << "BatchFixedLagSmoother::optimize  Initial error: "
 | 
						|
        << result.error << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use a custom optimization loop so the linearization points can be controlled
 | 
						|
  double previousError;
 | 
						|
  VectorValues newDelta;
 | 
						|
  do {
 | 
						|
    previousError = result.error;
 | 
						|
 | 
						|
    // Do next iteration
 | 
						|
    gttic(optimizer_iteration);
 | 
						|
    {
 | 
						|
      // Linearize graph around the linearization point
 | 
						|
      GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_);
 | 
						|
 | 
						|
      // Keep increasing lambda until we make make progress
 | 
						|
      while (true) {
 | 
						|
 | 
						|
        if (debug) {
 | 
						|
          std::cout << "BatchFixedLagSmoother::optimize  trying lambda = "
 | 
						|
              << lambda << std::endl;
 | 
						|
        }
 | 
						|
 | 
						|
        // Add prior factors at the current solution
 | 
						|
        gttic(damp);
 | 
						|
        GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
 | 
						|
        dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
 | 
						|
        {
 | 
						|
          // for each of the variables, add a prior at the current solution
 | 
						|
          double sigma = 1.0 / std::sqrt(lambda);
 | 
						|
          BOOST_FOREACH(const VectorValues::KeyValuePair& key_value, delta_) {
 | 
						|
            size_t dim = key_value.second.size();
 | 
						|
            Matrix A = Matrix::Identity(dim, dim);
 | 
						|
            Vector b = key_value.second;
 | 
						|
            SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);
 | 
						|
            GaussianFactor::shared_ptr prior(
 | 
						|
                new JacobianFactor(key_value.first, A, b, model));
 | 
						|
            dampedFactorGraph.push_back(prior);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        gttoc(damp);
 | 
						|
        result.intermediateSteps++;
 | 
						|
 | 
						|
        gttic(solve);
 | 
						|
        // Solve Damped Gaussian Factor Graph
 | 
						|
        newDelta = dampedFactorGraph.optimize(ordering_,
 | 
						|
            parameters_.getEliminationFunction());
 | 
						|
        // update the evalpoint with the new delta
 | 
						|
        evalpoint = theta_.retract(newDelta);
 | 
						|
        gttoc(solve);
 | 
						|
 | 
						|
        // Evaluate the new error
 | 
						|
        gttic(compute_error);
 | 
						|
        double error = factors_.error(evalpoint);
 | 
						|
        gttoc(compute_error);
 | 
						|
 | 
						|
        if (debug) {
 | 
						|
          std::cout << "BatchFixedLagSmoother::optimize  linear delta norm = "
 | 
						|
              << newDelta.norm() << std::endl;
 | 
						|
          std::cout << "BatchFixedLagSmoother::optimize  next error = " << error
 | 
						|
              << std::endl;
 | 
						|
        }
 | 
						|
 | 
						|
        if (error < result.error) {
 | 
						|
          // Keep this change
 | 
						|
          // Update the error value
 | 
						|
          result.error = error;
 | 
						|
          // Update the linearization point
 | 
						|
          theta_ = evalpoint;
 | 
						|
          // Reset the deltas to zeros
 | 
						|
          delta_.setZero();
 | 
						|
          // Put the linearization points and deltas back for specific variables
 | 
						|
          if (enforceConsistency_ && (linearKeys_.size() > 0)) {
 | 
						|
            theta_.update(linearKeys_);
 | 
						|
            BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, linearKeys_) {
 | 
						|
              delta_.at(key_value.key) = newDelta.at(key_value.key);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // Decrease lambda for next time
 | 
						|
          lambda /= lambdaFactor;
 | 
						|
          if (lambda < lambdaLowerBound) {
 | 
						|
            lambda = lambdaLowerBound;
 | 
						|
          }
 | 
						|
          // End this lambda search iteration
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          // Reject this change
 | 
						|
          if (lambda >= lambdaUpperBound) {
 | 
						|
            // The maximum lambda has been used. Print a warning and end the search.
 | 
						|
            std::cout
 | 
						|
                << "Warning:  Levenberg-Marquardt giving up because cannot decrease error with maximum lambda"
 | 
						|
                << std::endl;
 | 
						|
            break;
 | 
						|
          } else {
 | 
						|
            // Increase lambda and continue searching
 | 
						|
            lambda *= lambdaFactor;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } // end while
 | 
						|
    }
 | 
						|
    gttoc(optimizer_iteration);
 | 
						|
 | 
						|
    if (debug) {
 | 
						|
      std::cout << "BatchFixedLagSmoother::optimize  using lambda = " << lambda
 | 
						|
          << std::endl;
 | 
						|
    }
 | 
						|
 | 
						|
    result.iterations++;
 | 
						|
  } while (result.iterations < maxIterations
 | 
						|
      && !checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol,
 | 
						|
          previousError, result.error, NonlinearOptimizerParams::SILENT));
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::optimize  newError: " << result.error
 | 
						|
        << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::optimize() FINISH" << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) {
 | 
						|
  // In order to marginalize out the selected variables, the factors involved in those variables
 | 
						|
  // must be identified and removed. Also, the effect of those removed factors on the
 | 
						|
  // remaining variables needs to be accounted for. This will be done with linear container factors
 | 
						|
  // from the result of a partial elimination. This function removes the marginalized factors and
 | 
						|
  // adds the linearized factors back in.
 | 
						|
 | 
						|
  const bool debug = ISDEBUG("BatchFixedLagSmoother marginalize");
 | 
						|
 | 
						|
  if (debug)
 | 
						|
    std::cout << "BatchFixedLagSmoother::marginalize  Begin" << std::endl;
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::marginalize  Marginalize Keys: ";
 | 
						|
    BOOST_FOREACH(Key key, marginalizeKeys) {
 | 
						|
      std::cout << DefaultKeyFormatter(key) << " ";
 | 
						|
    }
 | 
						|
    std::cout << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Identify all of the factors involving any marginalized variable. These must be removed.
 | 
						|
  std::set<size_t> removedFactorSlots;
 | 
						|
  VariableIndex variableIndex(factors_);
 | 
						|
  BOOST_FOREACH(Key key, marginalizeKeys) {
 | 
						|
    const FastVector<size_t>& slots = variableIndex[key];
 | 
						|
    removedFactorSlots.insert(slots.begin(), slots.end());
 | 
						|
  }
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    std::cout << "BatchFixedLagSmoother::marginalize  Removed Factor Slots: ";
 | 
						|
    BOOST_FOREACH(size_t slot, removedFactorSlots) {
 | 
						|
      std::cout << slot << " ";
 | 
						|
    }
 | 
						|
    std::cout << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the removed factors to a factor graph
 | 
						|
  NonlinearFactorGraph removedFactors;
 | 
						|
  BOOST_FOREACH(size_t slot, removedFactorSlots) {
 | 
						|
    if (factors_.at(slot)) {
 | 
						|
      removedFactors.push_back(factors_.at(slot));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    PrintSymbolicGraph(removedFactors,
 | 
						|
        "BatchFixedLagSmoother::marginalize  Removed Factors: ");
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate marginal factors on the remaining keys
 | 
						|
  NonlinearFactorGraph marginalFactors = calculateMarginalFactors(
 | 
						|
      removedFactors, theta_, marginalizeKeys,
 | 
						|
      parameters_.getEliminationFunction());
 | 
						|
 | 
						|
  if (debug) {
 | 
						|
    PrintSymbolicGraph(removedFactors,
 | 
						|
        "BatchFixedLagSmoother::marginalize  Marginal Factors: ");
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove marginalized factors from the factor graph
 | 
						|
  removeFactors(removedFactorSlots);
 | 
						|
 | 
						|
  // Remove marginalized keys from the system
 | 
						|
  eraseKeys(marginalizeKeys);
 | 
						|
 | 
						|
  // Insert the new marginal factors
 | 
						|
  insertFactors(marginalFactors);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintKeySet(const std::set<Key>& keys,
 | 
						|
    const std::string& label) {
 | 
						|
  std::cout << label;
 | 
						|
  BOOST_FOREACH(gtsam::Key key, keys) {
 | 
						|
    std::cout << " " << gtsam::DefaultKeyFormatter(key);
 | 
						|
  }
 | 
						|
  std::cout << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintKeySet(const gtsam::KeySet& keys,
 | 
						|
    const std::string& label) {
 | 
						|
  std::cout << label;
 | 
						|
  BOOST_FOREACH(gtsam::Key key, keys) {
 | 
						|
    std::cout << " " << gtsam::DefaultKeyFormatter(key);
 | 
						|
  }
 | 
						|
  std::cout << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintSymbolicFactor(
 | 
						|
    const NonlinearFactor::shared_ptr& factor) {
 | 
						|
  std::cout << "f(";
 | 
						|
  if (factor) {
 | 
						|
    BOOST_FOREACH(Key key, factor->keys()) {
 | 
						|
      std::cout << " " << gtsam::DefaultKeyFormatter(key);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    std::cout << " NULL";
 | 
						|
  }
 | 
						|
  std::cout << " )" << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintSymbolicFactor(
 | 
						|
    const GaussianFactor::shared_ptr& factor) {
 | 
						|
  std::cout << "f(";
 | 
						|
  BOOST_FOREACH(Key key, factor->keys()) {
 | 
						|
    std::cout << " " << gtsam::DefaultKeyFormatter(key);
 | 
						|
  }
 | 
						|
  std::cout << " )" << std::endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintSymbolicGraph(
 | 
						|
    const NonlinearFactorGraph& graph, const std::string& label) {
 | 
						|
  std::cout << label << std::endl;
 | 
						|
  BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, graph) {
 | 
						|
    PrintSymbolicFactor(factor);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph,
 | 
						|
    const std::string& label) {
 | 
						|
  std::cout << label << std::endl;
 | 
						|
  BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, graph) {
 | 
						|
    PrintSymbolicFactor(factor);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
NonlinearFactorGraph BatchFixedLagSmoother::calculateMarginalFactors(
 | 
						|
    const NonlinearFactorGraph& graph, const Values& theta,
 | 
						|
    const std::set<Key>& marginalizeKeys,
 | 
						|
    const GaussianFactorGraph::Eliminate& eliminateFunction) {
 | 
						|
 | 
						|
  const bool debug = ISDEBUG("BatchFixedLagSmoother calculateMarginalFactors");
 | 
						|
 | 
						|
  if (debug)
 | 
						|
    std::cout << "BatchFixedLagSmoother::calculateMarginalFactors START"
 | 
						|
        << std::endl;
 | 
						|
 | 
						|
  if (debug)
 | 
						|
    PrintKeySet(marginalizeKeys,
 | 
						|
        "BatchFixedLagSmoother::calculateMarginalFactors  Marginalize Keys: ");
 | 
						|
 | 
						|
  // Get the set of all keys involved in the factor graph
 | 
						|
  KeySet allKeys(graph.keys());
 | 
						|
  if (debug)
 | 
						|
    PrintKeySet(allKeys,
 | 
						|
        "BatchFixedLagSmoother::calculateMarginalFactors  All Keys: ");
 | 
						|
 | 
						|
  if (!std::includes(allKeys.begin(), allKeys.end(), marginalizeKeys.begin(),
 | 
						|
      marginalizeKeys.end())) {
 | 
						|
    throw std::runtime_error("Some keys found in marginalizeKeys do not"
 | 
						|
                             " occur in the graph.");
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate the set of RemainingKeys = AllKeys \Intersect marginalizeKeys
 | 
						|
  KeySet remainingKeys;
 | 
						|
  std::set_difference(allKeys.begin(), allKeys.end(), marginalizeKeys.begin(),
 | 
						|
      marginalizeKeys.end(), std::inserter(remainingKeys, remainingKeys.end()));
 | 
						|
  if (debug)
 | 
						|
    PrintKeySet(remainingKeys,
 | 
						|
        "BatchFixedLagSmoother::calculateMarginalFactors  Remaining Keys: ");
 | 
						|
 | 
						|
  if (marginalizeKeys.size() == 0) {
 | 
						|
    // There are no keys to marginalize. Simply return the input factors
 | 
						|
    if (debug)
 | 
						|
      std::cout << "BatchFixedLagSmoother::calculateMarginalFactors FINISH"
 | 
						|
          << std::endl;
 | 
						|
    return graph;
 | 
						|
  } else {
 | 
						|
 | 
						|
    // Create the linear factor graph
 | 
						|
    GaussianFactorGraph linearFactorGraph = *graph.linearize(theta);
 | 
						|
    // .first is the eliminated Bayes tree, while .second is the remaining factor graph
 | 
						|
    GaussianFactorGraph marginalLinearFactors =
 | 
						|
        *linearFactorGraph.eliminatePartialMultifrontal(
 | 
						|
            std::vector<Key>(marginalizeKeys.begin(), marginalizeKeys.end())).second;
 | 
						|
 | 
						|
    // Wrap in nonlinear container factors
 | 
						|
    NonlinearFactorGraph marginalFactors;
 | 
						|
    marginalFactors.reserve(marginalLinearFactors.size());
 | 
						|
    BOOST_FOREACH(const GaussianFactor::shared_ptr& gaussianFactor, marginalLinearFactors) {
 | 
						|
      marginalFactors += boost::make_shared<LinearContainerFactor>(
 | 
						|
          gaussianFactor, theta);
 | 
						|
      if (debug) {
 | 
						|
        std::cout
 | 
						|
            << "BatchFixedLagSmoother::calculateMarginalFactors  Marginal Factor: ";
 | 
						|
        PrintSymbolicFactor(marginalFactors.back());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (debug)
 | 
						|
      PrintSymbolicGraph(marginalFactors,
 | 
						|
          "BatchFixedLagSmoother::calculateMarginalFactors  All Marginal Factors: ");
 | 
						|
 | 
						|
    if (debug)
 | 
						|
      std::cout << "BatchFixedLagSmoother::calculateMarginalFactors FINISH"
 | 
						|
          << std::endl;
 | 
						|
 | 
						|
    return marginalFactors;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
} /// namespace gtsam
 |