82 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			82 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file Pose2SLAMwSPCG.cpp
 | |
|  * @brief A 2D Pose SLAM example using the SimpleSPCGSolver.
 | |
|  * @author Yong-Dian Jian
 | |
|  * @date June 2, 2012
 | |
|  */
 | |
| 
 | |
| // For an explanation of headers below, please see Pose2SLAMExample.cpp
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| 
 | |
| // In contrast to that example, however, we will use a PCG solver here
 | |
| #include <gtsam/linear/SubgraphSolver.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| int main(int argc, char** argv) {
 | |
| 
 | |
|   // 1. Create a factor graph container and add factors to it
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // 2a. Add a prior on the first pose, setting it to the origin
 | |
|   Pose2 prior(0.0, 0.0, 0.0); // prior at origin
 | |
|   noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
 | |
|   graph.push_back(PriorFactor<Pose2>(1, prior, priorNoise));
 | |
| 
 | |
|   // 2b. Add odometry factors
 | |
|   noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
 | |
|   graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, M_PI_2),    odometryNoise));
 | |
|   graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | |
|   graph.push_back(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | |
|   graph.push_back(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | |
| 
 | |
|   // 2c. Add the loop closure constraint
 | |
|   noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
 | |
|   graph.push_back(BetweenFactor<Pose2>(5, 1, Pose2(0.0, 0.0, 0.0), model));
 | |
|   graph.print("\nFactor Graph:\n"); // print
 | |
| 
 | |
| 
 | |
|   // 3. Create the data structure to hold the initialEstimate estimate to the solution
 | |
|   Values initialEstimate;
 | |
|   initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
 | |
|   initialEstimate.insert(2, Pose2(2.3, 0.1, 1.1));
 | |
|   initialEstimate.insert(3, Pose2(2.1, 1.9, 2.8));
 | |
|   initialEstimate.insert(4, Pose2(-.3, 2.5, 4.2));
 | |
|   initialEstimate.insert(5, Pose2(0.1,-0.7, 5.8));
 | |
|   initialEstimate.print("\nInitial Estimate:\n"); // print
 | |
| 
 | |
|   // 4. Single Step Optimization using Levenberg-Marquardt
 | |
|   LevenbergMarquardtParams parameters;
 | |
|   parameters.verbosity = NonlinearOptimizerParams::ERROR;
 | |
|   parameters.verbosityLM = LevenbergMarquardtParams::LAMBDA;
 | |
| 
 | |
|   // LM is still the outer optimization loop, but by specifying "Iterative" below
 | |
|   // We indicate that an iterative linear solver should be used.
 | |
|   // In addition, the *type* of the iterativeParams decides on the type of
 | |
|   // iterative solver, in this case the SPCG (subgraph PCG)
 | |
|   parameters.linearSolverType = NonlinearOptimizerParams::Iterative;
 | |
|   parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
 | |
| 
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
 | |
|   Values result = optimizer.optimize();
 | |
|   result.print("Final Result:\n");
 | |
|   cout << "subgraph solver final error = " << graph.error(result) << endl;
 | |
| 
 | |
|   return 0;
 | |
| }
 |