gtsam/gtsam/sfm/ShonanGaugeFactor.h

107 lines
3.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ShonanGaugeFactor.h
* @date March 2019
* @author Frank Dellaert
* @brief Factor used in Shonan Averaging to clamp down gauge freedom
*/
#pragma once
#include <gtsam/geometry/SOn.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
/**
* The ShonanGaugeFactor creates a constraint on a single SO(n) to avoid moving
* in the stabilizer.
*
* Details: SO(p) contains the p*3 Stiefel matrices of orthogonal frames: we
* take those to be the 3 columns on the left.
* The P*P skew-symmetric matrices associated with so(p) can be partitioned as
* (Appendix B in the ECCV paper):
* | [w] -K' |
* | K [g] |
* where w is the SO(3) space, K are the extra Stiefel diemnsions (wormhole!)
* and (g)amma are extra dimensions in SO(p) that do not modify the cost
* function. The latter corresponds to rotations SO(p-d), and so the first few
* values of p-d for d==3 with their corresponding dimensionality are {0:0, 1:0,
* 2:1, 3:3, ...}
*
* The ShonanGaugeFactor adds a unit Jacobian to these extra dimensions,
* essentially restricting the optimization to the Stiefel manifold.
*/
class GTSAM_EXPORT ShonanGaugeFactor : public NonlinearFactor {
// Row dimension, equal to the dimensionality of SO(p-d)
size_t rows_;
/// Constant Jacobian
std::shared_ptr<JacobianFactor> whitenedJacobian_;
public:
/**
* Construct from key for an SO(p) matrix, for base dimension d (2 or 3)
* If parameter gamma is given, it acts as a precision = 1/sigma^2, and
* the Jacobian will be multiplied with 1/sigma = sqrt(gamma).
*/
ShonanGaugeFactor(Key key, size_t p, size_t d = 3,
std::optional<double> gamma = {})
: NonlinearFactor(KeyVector{key}) {
if (p < d) {
throw std::invalid_argument("ShonanGaugeFactor must have p>=d.");
}
// Calculate dimensions
size_t q = p - d;
size_t P = SOn::Dimension(p); // dimensionality of SO(p)
rows_ = SOn::Dimension(q); // dimensionality of SO(q), the gauge
// Create constant Jacobian as a rows_*P matrix: there are rows_ penalized
// dimensions, but it is a bit tricky to find them among the P columns.
// The key is to look at how skew-symmetric matrices are laid out in SOn.h:
// the first tangent dimension will always be included, but beyond that we
// have to be careful. We always need to skip the d top-rows of the skew-
// symmetric matrix as they below to K, part of the Stiefel manifold.
Matrix A(rows_, P);
A.setZero();
double invSigma = gamma ? std::sqrt(*gamma) : 1.0;
size_t i = 0, j = 0, n = p - 1 - d;
while (i < rows_) {
A.block(i, j, n, n) = invSigma * Matrix::Identity(n, n);
i += n;
j += n + d; // skip d columns
n -= 1;
}
// TODO(frank): assign the right one in the right columns
whitenedJacobian_ =
std::make_shared<JacobianFactor>(key, A, Vector::Zero(rows_));
}
/// Destructor
~ShonanGaugeFactor() override {}
/// Calculate the error of the factor: always zero
double error(const Values &c) const override { return 0; }
/// get the dimension of the factor (number of rows on linearization)
size_t dim() const override { return rows_; }
/// linearize to a GaussianFactor
std::shared_ptr<GaussianFactor> linearize(const Values &c) const override {
return whitenedJacobian_;
}
};
// \ShonanGaugeFactor
} // namespace gtsam