61 lines
1.8 KiB
C++
61 lines
1.8 KiB
C++
/*
|
|
* @file JacobianFactorQ.h
|
|
* @date Oct 27, 2013
|
|
* @uthor Frank Dellaert
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "JacobianSchurFactor.h"
|
|
|
|
namespace gtsam {
|
|
/**
|
|
* JacobianFactor for Schur complement that uses Q noise model
|
|
*/
|
|
template<size_t D>
|
|
class JacobianFactorQ: public JacobianSchurFactor<D> {
|
|
|
|
typedef JacobianSchurFactor<D> Base;
|
|
|
|
public:
|
|
|
|
/// Default constructor
|
|
JacobianFactorQ() {
|
|
}
|
|
|
|
/// Empty constructor with keys
|
|
JacobianFactorQ(const FastVector<Key>& keys,
|
|
const SharedDiagonal& model = SharedDiagonal()) : JacobianSchurFactor<D>() {
|
|
Matrix zeroMatrix = Matrix::Zero(0,D);
|
|
Vector zeroVector = Vector::Zero(0);
|
|
typedef std::pair<Key, Matrix> KeyMatrix;
|
|
std::vector<KeyMatrix> QF;
|
|
QF.reserve(keys.size());
|
|
BOOST_FOREACH(const Key& key, keys)
|
|
QF.push_back(KeyMatrix(key, zeroMatrix));
|
|
JacobianFactor::fillTerms(QF, zeroVector, model);
|
|
}
|
|
|
|
/// Constructor
|
|
JacobianFactorQ(const std::vector<typename Base::KeyMatrix2D, Eigen::aligned_allocator<KeyMatrix2D>>& Fblocks,
|
|
const Matrix& E, const Matrix3& P, const Vector& b,
|
|
const SharedDiagonal& model = SharedDiagonal()) :
|
|
JacobianSchurFactor<D>() {
|
|
size_t j = 0, m2 = E.rows(), m = m2 / 2;
|
|
// Calculate projector Q
|
|
Matrix Q = eye(m2) - E * P * E.transpose();
|
|
// Calculate pre-computed Jacobian matrices
|
|
// TODO: can we do better ?
|
|
typedef std::pair<Key, Matrix> KeyMatrix;
|
|
std::vector < KeyMatrix > QF;
|
|
QF.reserve(m);
|
|
// Below, we compute each 2m*D block A_j = Q_j * F_j = (2m*2) * (2*D)
|
|
BOOST_FOREACH(const typename Base::KeyMatrix2D& it, Fblocks)
|
|
QF.push_back(KeyMatrix(it.first, Q.block(0, 2 * j++, m2, 2) * it.second));
|
|
// Which is then passed to the normal JacobianFactor constructor
|
|
JacobianFactor::fillTerms(QF, Q * b, model);
|
|
}
|
|
};
|
|
|
|
}
|