83 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
| 
 | |
| /*STL/C++*/
 | |
| #include <iostream>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include "Pose2Graph.h"
 | |
| #include "NonlinearFactorGraph-inl.h"
 | |
| #include "GaussianFactorGraph.h"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| 
 | |
| TEST( Pose2Graph, constructor )
 | |
| {
 | |
| 	// create a factor between unknown poses p1 and p2
 | |
| 	Pose2 measured(2,2,M_PI_2);
 | |
| 	Matrix measurement_covariance = Matrix_(3,3,
 | |
| 			0.25, 0.0, 0.0,
 | |
| 			0.0, 0.25, 0.0,
 | |
| 			0.0, 0.0, 0.01
 | |
| 			);
 | |
| 	Pose2Factor constraint("x1","x2",measured, measurement_covariance);
 | |
| 	Pose2Graph graph;
 | |
| 	graph.push_back(Pose2Factor::shared_ptr(new Pose2Factor("x1","x2",measured, measurement_covariance)));
 | |
| 	// get the size of the graph
 | |
| 	size_t actual = graph.size();
 | |
| 	// verify
 | |
| 	size_t expected = 1;
 | |
| 	CHECK(actual == expected);
 | |
| 
 | |
| }
 | |
| TEST( Pose2Graph, linerization )
 | |
| {
 | |
| 	// create a factor between unknown poses p1 and p2
 | |
| 	Pose2 measured(2,2,M_PI_2);
 | |
| 	Matrix measurement_covariance = Matrix_(3,3,
 | |
| 			0.25, 0.0, 0.0,
 | |
| 			0.0, 0.25, 0.0,
 | |
| 			0.0, 0.0, 0.01
 | |
| 	);
 | |
| 	Pose2Factor constraint("x1","x2",measured, measurement_covariance);
 | |
| 	Pose2Graph graph;
 | |
| 	graph.push_back(Pose2Factor::shared_ptr(new Pose2Factor("x1","x2",measured, measurement_covariance)));
 | |
| 
 | |
| 	// Choose a linearization point
 | |
| 	Pose2 p1(1.1,2,M_PI_2); // robot at (1.1,2) looking towards y (ground truth is at 1,2, see testPose2)
 | |
| 	Pose2 p2(-1,4.1,M_PI);  // robot at (-1,4) looking at negative (ground truth is at 4.1,2)
 | |
| 	Pose2Config config;
 | |
| 	config.insert("x1",p1);
 | |
| 	config.insert("x2",p2);
 | |
| 	// Linearize
 | |
| 	GaussianFactorGraph lfg_linearized = graph.linearize(config);
 | |
| 	//lfg_linearized.print("lfg_actual");
 | |
| 
 | |
| 	// the expected linear factor
 | |
| 	GaussianFactorGraph lfg_expected;
 | |
| 	Matrix A1 = Matrix_(3,3,
 | |
| 	    0.0, 2.0, 4.2,
 | |
| 	    -2.0, 0.0, 4.2,
 | |
| 	    0.0, 0.0, 10.0);
 | |
| 
 | |
| 	Matrix A2 = Matrix_(3,3,
 | |
| 	    -2.0, 0.0,  0.0,
 | |
| 	    0.0,-2.0,  0.0,
 | |
| 	    0.0, 0.0, -10.0);
 | |
| 
 | |
| 
 | |
| 	double sigma = 1;
 | |
| 	Vector b = Vector_(3,0.1,-0.1,0.0);
 | |
| 	lfg_expected.add("x1", A1, "x2", A2, b, sigma);
 | |
| 
 | |
| 
 | |
| 	CHECK(assert_equal(lfg_expected, lfg_linearized));
 | |
| 
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
| 	TestResult tr;
 | |
| 	return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |