207 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			207 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Matlab
		
	
	
| %close all
 | |
| %clc
 | |
| 
 | |
| import gtsam.*;
 | |
| 
 | |
| %% Read metadata and compute relative sensor pose transforms
 | |
| IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
 | |
| IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
 | |
| IMUinBody = Pose3.Expmap([
 | |
|     IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
 | |
|     IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
 | |
| 
 | |
| VO_metadata = importdata('KittiRelativePose_metadata.txt');
 | |
| VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
 | |
| VOinBody = Pose3.Expmap([
 | |
|     VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
 | |
|     VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
 | |
| 
 | |
| GPS_metadata = importdata('KittiGps_metadata.txt');
 | |
| GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2);
 | |
| GPSinBody = Pose3.Expmap([
 | |
|     GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz;
 | |
|     GPS_metadata.BodyPrx; GPS_metadata.BodyPry; GPS_metadata.BodyPrz; ]);
 | |
| 
 | |
| VOinIMU = IMUinBody.inverse().compose(VOinBody);
 | |
| GPSinIMU = IMUinBody.inverse().compose(GPSinBody);
 | |
| 
 | |
| %% Read data and change coordinate frame of GPS and VO measurements to IMU frame
 | |
| IMU_data = importdata('KittiEquivBiasedImu.txt');
 | |
| IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
 | |
| imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
 | |
| [IMU_data.acc_omega] = deal(imum{:});
 | |
| IMU_data = rmfield(IMU_data, { 'accelX' 'accelY' 'accelZ' 'omegaX' 'omegaY' 'omegaZ' });
 | |
| clear imum
 | |
| 
 | |
| VO_data = importdata('KittiRelativePose.txt');
 | |
| VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2);
 | |
| % Merge relative pose fields and convert to Pose3
 | |
| logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ];
 | |
| logposes = num2cell(logposes, 2);
 | |
| relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{1}')}, logposes);
 | |
| % TODO: convert to IMU frame %relposes = arrayfun(
 | |
| [VO_data.RelativePose] = deal(relposes{:});
 | |
| VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' });
 | |
| clear logposes relposes
 | |
| 
 | |
| GPS_data = importdata('KittiGps.txt');
 | |
| GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2);
 | |
| 
 | |
| %%
 | |
| SummaryTemplate = gtsam.ImuFactorPreintegratedMeasurements( ...
 | |
|     gtsam.imuBias.ConstantBias([0;0;0], [0;0;0]), ...
 | |
|     1e-3 * eye(3), 1e-3 * eye(3), 1e-3 * eye(3));
 | |
|   
 | |
| %% Set initial conditions for the estimated trajectory
 | |
| disp('TODO: we have GPS so this initialization is not right')
 | |
| currentPoseGlobal = Pose3; % initial pose is the reference frame (navigation frame)
 | |
| currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning
 | |
| bias_acc = [0;0;0]; % we initialize accelerometer biases to zero
 | |
| bias_omega = [0;0;0]; % we initialize gyro biases to zero
 | |
| 
 | |
| %% Solver object
 | |
| isamParams = ISAM2Params;
 | |
| isamParams.setRelinearizeSkip(1);
 | |
| isam = gtsam.ISAM2(isamParams);
 | |
| 
 | |
| %% create nonlinear factor graph
 | |
| factors = NonlinearFactorGraph;
 | |
| values = Values;
 | |
| 
 | |
| %% Create prior on initial pose, velocity, and biases
 | |
| sigma_init_x = 1.0
 | |
| sigma_init_v = 1.0
 | |
| sigma_init_b = 1.0
 | |
| 
 | |
| values.insert(symbol('x',0), currentPoseGlobal);
 | |
| values.insert(symbol('v',0), LieVector(currentVelocityGlobal) );
 | |
| values.insert(symbol('b',0), imuBias.ConstantBias(bias_acc,bias_omega) );
 | |
| 
 | |
| % Prior on initial pose
 | |
| factors.add(PriorFactorPose3(symbol('x',0), ...
 | |
|   currentPoseGlobal, noiseModel.Isotropic.Sigma(6, sigma_init_x)));
 | |
| % Prior on initial velocity
 | |
| factors.add(PriorFactorLieVector(symbol('v',0), ...
 | |
|   LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, sigma_init_v)));
 | |
| % Prior on initial bias
 | |
| factors.add(PriorFactorConstantBias(symbol('b',0), ...
 | |
|   imuBias.ConstantBias(bias_acc,bias_omega), noiseModel.Isotropic.Sigma(6, sigma_init_b)));
 | |
| 
 | |
| %% Main loop:
 | |
| % (1) we read the measurements
 | |
| % (2) we create the corresponding factors in the graph
 | |
| % (3) we solve the graph to obtain and optimal estimate of robot trajectory
 | |
| 
 | |
| i = 2;
 | |
| lastTime = 0;
 | |
| lastIndex = 0;
 | |
| currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate);
 | |
| 
 | |
| times = sort([VO_data(:,1); GPS_data(:,1)]); % this are the time-stamps at which we want to initialize a new node in the graph
 | |
| IMU_times = IMU_data(:,1);
 | |
| 
 | |
| disp('TODO: still needed to take care of the initial time')
 | |
| 
 | |
| for t = times
 | |
|   % At each non=IMU measurement we initialize a new node in the graph
 | |
|   currentIndex = find( times == t );
 | |
|   currentPoseKey = symbol('x',currentIndex);
 | |
|   currentVelKey = symbol('v',currentIndex);
 | |
|   currentBiasKey = symbol('b',currentIndex);
 | |
|   
 | |
|   %% add preintegrated IMU factor between previous state and current state
 | |
|   % =======================================================================
 | |
|   IMUbetweenTimesIndices = find( IMU_times>+t_previous & IMU_times<= t);
 | |
|   % all imu measurements occurred between t_previous and t
 | |
|   
 | |
|   % we assume that each row of the IMU.txt file has the following structure:
 | |
|   % timestamp delta_t acc_x acc_y acc_z omega_x omega_y omega_z
 | |
|   disp('TODO: We want don t want to preintegrate with zero bias, but to use the most recent estimate')
 | |
|   currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate);
 | |
|   for i=1:length(IMUbetweenTimesIndices)
 | |
|     index = IMUbetweenTimesIndices(i); % the row of the IMU_data matrix that we have to integrate
 | |
|     deltaT = IMU_data(index,2);
 | |
|     accMeas = IMU_data(index,3:5);
 | |
|     omegaMeas = IMU_data(index,6:8);
 | |
|     % Accumulate preintegrated measurement
 | |
|     currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
 | |
|   end
 | |
|   
 | |
|   disp('TODO: is the imu noise right?')
 | |
|   % Create IMU factor
 | |
|   factors.add(ImuFactor( ...
 | |
|     previousPoseKey, previousVelKey, ...
 | |
|     currentPoseKey, currentVelKey, ...
 | |
|     currentBiasKey, currentSummarizedMeasurement, g, cor_v, ...
 | |
|     noiseModel.Isotropic.Sigma(9, 1e-6)));
 | |
|   % =======================================================================
 | |
|   
 | |
|   
 | |
|   %% add factor corresponding to GPS measurements (if available at the current time)
 | |
|   % =======================================================================
 | |
|   if isempty(  find(GPS_data(:,1) == t  ) ) == 0 % it is a GPS measurement
 | |
|     if length( find(GPS_data(:,1)) ) > 1
 | |
|       error('more GPS measurements at the same time stamp: it should be an error')
 | |
|     end
 | |
|     
 | |
|     index = find(GPS_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate
 | |
|     GPSmeas = GPS_data(index,2:4);
 | |
|     
 | |
|     noiseModelGPS = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x))
 | |
|     
 | |
|     % add factor
 | |
|     disp('TODO: is the GPS noise right?')
 | |
|     factors.add(PriorFactor???(currentPoseKey, GPSmeas, noiseModelGPS) );
 | |
|   end
 | |
|   % =======================================================================
 | |
|   
 | |
|   
 | |
|   %% add factor corresponding to VO measurements (if available at the current time)
 | |
|   % =======================================================================
 | |
|   if isempty(  find(VO_data(:,1) == t  )  )== 0 % it is a GPS measurement
 | |
|     if length( find(VO_data(:,1)) ) > 1
 | |
|       error('more VO measurements at the same time stamp: it should be an error')
 | |
|     end
 | |
|     
 | |
|     index = find( VO_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate
 | |
|     VOmeas_pos = VO_data(index,2:4)';
 | |
|     VOmeas_ang = VO_data(index,5:7)';
 | |
|     
 | |
|     VOpose = Pose3( Rot3(VOmeas_ang) , Point3(VOmeas_pos) );
 | |
|     noiseModelVO = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x))
 | |
|     
 | |
|     % add factor
 | |
|     disp('TODO: is the VO noise right?')
 | |
|     factors.add(BetweenFactorPose3(lastVOPoseKey, currentPoseKey, VOpose, noiseModelVO));
 | |
|     
 | |
|     lastVOPoseKey = currentPoseKey;
 | |
|   end
 | |
|   % =======================================================================
 | |
|   
 | |
|   disp('TODO: add values')
 | |
|   %     values.insert(, initialPose);
 | |
|   %   values.insert(symbol('v',lastIndex+1), initialVel);
 | |
|   
 | |
|   %% Update solver
 | |
|   % =======================================================================
 | |
|   isam.update(factors, values);
 | |
|   factors = NonlinearFactorGraph;
 | |
|   values = Values;
 | |
|   
 | |
|   isam.calculateEstimate(currentPoseKey);
 | |
|   %   M = isam.marginalCovariance(key_pose);
 | |
|   % =======================================================================
 | |
|   
 | |
|   previousPoseKey = currentPoseKey;
 | |
|   previousVelKey = currentVelKey;
 | |
|   t_previous = t;
 | |
| end
 | |
| 
 | |
| disp('TODO: display results')
 | |
| % figure(1)
 | |
| % hold on;
 | |
| % plot(positions(1,:), positions(2,:), '-b');
 | |
| % plot3DTrajectory(isam.calculateEstimate, 'g-');
 | |
| % axis equal;
 | |
| % legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')
 |