397 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			397 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file   InertialNavFactor_GlobalVelocity.h
 | |
|  *  @author Vadim Indelman, Stephen Williams
 | |
|  *  @brief  Inertial navigation factor (velocity in the global frame)
 | |
|  *  @date   Sept 13, 2012
 | |
|  **/
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/linear/NoiseModel.h>
 | |
| #include <gtsam/geometry/Rot3.h>
 | |
| #include <gtsam/base/LieVector.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| 
 | |
| // Using numerical derivative to calculate d(Pose3::Expmap)/dw
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| 
 | |
| #include <boost/optional.hpp>
 | |
| 
 | |
| #include <ostream>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /*
 | |
|  * NOTES:
 | |
|  * =====
 | |
|  * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame.
 | |
|  * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames.
 | |
|  * - Camera and IMU frames are identical
 | |
|  * - The user should specify a continuous equivalent noise covariance, which can be calculated using
 | |
|  *   the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance
 | |
|  *   matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a
 | |
|  *   discrete form using the supplied delta_t between sub-sequential measurements.
 | |
|  * - Earth-rate correction:
 | |
|  * 		+ Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global
 | |
|  * 		  frame (Local-Level system: ENU or NED, see above).
 | |
|  * 		+ R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system.
 | |
|  *		+ Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant.
 | |
|  *		  Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon.
 | |
|  *
 | |
|  * - Frame Notation:
 | |
|  *   Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame}
 | |
|  *   So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor
 | |
|  *   And the transformation from the body frame to the world frame would be: world_P_body
 | |
|  *   This allows visual chaining. For example, converting the sensed angular velocity of the IMU
 | |
|  *   (angular velocity of the sensor in the sensor frame) into the world frame can be performed as:
 | |
|  *       world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor
 | |
|  *
 | |
|  *
 | |
|  * - Common Quantity Types
 | |
|  *   P : pose/3d transformation
 | |
|  *   R : rotation
 | |
|  *   omega : angular velocity
 | |
|  *   t : translation
 | |
|  *   v : velocity
 | |
|  *   a : acceleration
 | |
|  *
 | |
|  * - Common Frames
 | |
|  *   sensor : the coordinate system attached to the sensor origin
 | |
|  *   body   : the coordinate system attached to body/inertial frame.
 | |
|  *            Unless an optional frame transformation is provided, the
 | |
|  *            sensor frame and the body frame will be identical
 | |
|  *   world  : the global/world coordinate frame. This is assumed to be
 | |
|  *            a tangent plane to the earth's surface somewhere near the
 | |
|  *            vehicle
 | |
|  */
 | |
| template<class POSE, class VELOCITY, class IMUBIAS>
 | |
| class InertialNavFactor_GlobalVelocity : public NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> {
 | |
| 
 | |
| private:
 | |
| 
 | |
| 	typedef InertialNavFactor_GlobalVelocity<POSE, VELOCITY, IMUBIAS> This;
 | |
| 	typedef NoiseModelFactor5<POSE, VELOCITY, IMUBIAS, POSE, VELOCITY> Base;
 | |
| 
 | |
| 	Vector measurement_acc_;
 | |
| 	Vector measurement_gyro_;
 | |
| 	double dt_;
 | |
| 
 | |
| 	Vector world_g_;
 | |
| 	Vector world_rho_;
 | |
|   Vector world_omega_earth_;
 | |
| 
 | |
|   boost::optional<POSE> body_P_sensor_; // The pose of the sensor in the body frame
 | |
| 
 | |
| public:
 | |
| 
 | |
| 	// shorthand for a smart pointer to a factor
 | |
| 	typedef typename boost::shared_ptr<InertialNavFactor_GlobalVelocity> shared_ptr;
 | |
| 
 | |
| 	/** default constructor - only use for serialization */
 | |
| 	InertialNavFactor_GlobalVelocity() {}
 | |
| 
 | |
| 	/** Constructor */
 | |
| 	InertialNavFactor_GlobalVelocity(const Key& Pose1, const Key& Vel1, const Key& IMUBias1, const Key& Pose2, const Key& Vel2,
 | |
|       const Vector& measurement_acc, const Vector& measurement_gyro, const double measurement_dt, const Vector world_g, const Vector world_rho,
 | |
|       const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_continuous, boost::optional<POSE> body_P_sensor = boost::none) :
 | |
|         Base(calc_descrete_noise_model(model_continuous, measurement_dt ),
 | |
|             Pose1, Vel1, IMUBias1, Pose2, Vel2), measurement_acc_(measurement_acc), measurement_gyro_(measurement_gyro),
 | |
|             dt_(measurement_dt), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), body_P_sensor_(body_P_sensor) {	}
 | |
| 
 | |
| 	virtual ~InertialNavFactor_GlobalVelocity() {}
 | |
| 
 | |
| 	/** implement functions needed for Testable */
 | |
| 
 | |
| 	/** print */
 | |
| 	virtual void print(const std::string& s = "InertialNavFactor_GlobalVelocity", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | |
| 		std::cout << s << "("
 | |
| 				<< keyFormatter(this->key1()) << ","
 | |
| 				<< keyFormatter(this->key2()) << ","
 | |
| 				<< keyFormatter(this->key3()) << ","
 | |
| 				<< keyFormatter(this->key4()) << ","
 | |
| 				<< keyFormatter(this->key5()) << "\n";
 | |
| 		std::cout << "acc measurement: " << this->measurement_acc_.transpose() << std::endl;
 | |
| 		std::cout << "gyro measurement: " << this->measurement_gyro_.transpose() << std::endl;
 | |
| 		std::cout << "dt: " << this->dt_ << std::endl;
 | |
| 		std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl;
 | |
| 		std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
 | |
| 		std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
 | |
| 		if(this->body_P_sensor_)
 | |
| 		  this->body_P_sensor_->print("  sensor pose in body frame: ");
 | |
|     this->noiseModel_->print("  noise model");
 | |
| 	}
 | |
| 
 | |
| 	/** equals */
 | |
| 	virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
 | |
| 		const This *e =	dynamic_cast<const This*> (&expected);
 | |
| 		return e != NULL && Base::equals(*e, tol)
 | |
| 		  && (measurement_acc_ - e->measurement_acc_).norm() < tol
 | |
| 		  && (measurement_gyro_ - e->measurement_gyro_).norm() < tol
 | |
| 		  && (dt_ - e->dt_) < tol
 | |
| 		  && (world_g_ - e->world_g_).norm() < tol
 | |
| 		  && (world_rho_ - e->world_rho_).norm() < tol
 | |
| 		  && (world_omega_earth_ - e->world_omega_earth_).norm() < tol
 | |
| 		  && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
 | |
| 	}
 | |
| 
 | |
|   POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
 | |
|     // Calculate the corrected measurements using the Bias object
 | |
|     Vector GyroCorrected(Bias1.CorrectGyro(measurement_gyro_));
 | |
| 
 | |
|     const POSE& world_P1_body = Pose1;
 | |
|     const VELOCITY& world_V1_body = Vel1;
 | |
| 
 | |
|     // Calculate the acceleration and angular velocity of the body in the body frame (including earth-related rotations)
 | |
|     Vector body_omega_body;
 | |
|     if(body_P_sensor_) {
 | |
|       body_omega_body = body_P_sensor_->rotation().matrix() * GyroCorrected;
 | |
|     } else {
 | |
|       body_omega_body = GyroCorrected;
 | |
|     }
 | |
| 
 | |
|     // Convert earth-related terms into the body frame
 | |
|     Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
 | |
|     Vector body_rho = body_R_world * world_rho_;
 | |
|     Vector body_omega_earth = body_R_world * world_omega_earth_;
 | |
| 
 | |
|     // Correct for earth-related terms
 | |
|     body_omega_body -= body_rho + body_omega_earth;
 | |
| 
 | |
|     // The velocity is in the global frame, so composing Pose1 with v*dt is incorrect
 | |
|     return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_omega_body*dt_), Pose1.translation() + typename POSE::Translation(world_V1_body*dt_));
 | |
|   }
 | |
| 
 | |
|   VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const {
 | |
|     // Calculate the corrected measurements using the Bias object
 | |
|     Vector AccCorrected(Bias1.CorrectAcc(measurement_acc_));
 | |
| 
 | |
|     const POSE& world_P1_body = Pose1;
 | |
|     const VELOCITY& world_V1_body = Vel1;
 | |
| 
 | |
|     // Calculate the acceleration and angular velocity of the body in the body frame (including earth-related rotations)
 | |
|     Vector body_a_body, body_omega_body;
 | |
|     if(body_P_sensor_) {
 | |
|       Matrix body_R_sensor = body_P_sensor_->rotation().matrix();
 | |
| 
 | |
|       Vector GyroCorrected(Bias1.CorrectGyro(measurement_gyro_));
 | |
|       body_omega_body = body_R_sensor * GyroCorrected;
 | |
|       Matrix body_omega_body__cross = skewSymmetric(body_omega_body);
 | |
|       body_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor_->translation().vector();
 | |
|     } else {
 | |
|       body_a_body = AccCorrected;
 | |
|     }
 | |
| 
 | |
|     // Correct for earth-related terms
 | |
|     Vector world_a_body = world_P1_body.rotation().matrix() * body_a_body + world_g_ - 2*skewSymmetric(world_rho_ + world_omega_earth_)*world_V1_body;
 | |
| 
 | |
|     // Calculate delta in the body frame
 | |
|     VELOCITY VelDelta(world_a_body*dt_);
 | |
| 
 | |
|     // Predict
 | |
|     return Vel1.compose(VelDelta);
 | |
|   }
 | |
| 
 | |
|   void predict(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2) const {
 | |
|     Pose2 = predictPose(Pose1, Vel1, Bias1);
 | |
|     Vel2 = predictVelocity(Pose1, Vel1, Bias1);
 | |
|   }
 | |
| 
 | |
|   POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
 | |
|     // Predict
 | |
|     POSE Pose2Pred = predictPose(Pose1, Vel1, Bias1);
 | |
| 
 | |
|     // Calculate error
 | |
|     return Pose2.between(Pose2Pred);
 | |
|   }
 | |
| 
 | |
|   VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const {
 | |
|     // Predict
 | |
|     VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1, Bias1);
 | |
| 
 | |
|     // Calculate error
 | |
|     return Vel2.between(Vel2Pred);
 | |
|   }
 | |
| 
 | |
|   /** implement functions needed to derive from Factor */
 | |
| 	Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2,
 | |
| 			boost::optional<Matrix&> H1 = boost::none,
 | |
| 			boost::optional<Matrix&> H2 = boost::none,
 | |
| 			boost::optional<Matrix&> H3 = boost::none,
 | |
| 			boost::optional<Matrix&> H4 = boost::none,
 | |
| 			boost::optional<Matrix&> H5 = boost::none) const {
 | |
| 
 | |
|     // TODO: Write analytical derivative calculations
 | |
|     // Jacobian w.r.t. Pose1
 | |
|     if (H1){
 | |
|       Matrix H1_Pose = gtsam::numericalDerivative11<POSE, POSE>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, _1, Vel1, Bias1, Pose2, Vel2), Pose1);
 | |
|       Matrix H1_Vel = gtsam::numericalDerivative11<VELOCITY, POSE>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, _1, Vel1, Bias1, Pose2, Vel2), Pose1);
 | |
|       *H1 = stack(2, &H1_Pose, &H1_Vel);
 | |
|     }
 | |
| 
 | |
|     // Jacobian w.r.t. Vel1
 | |
|     if (H2){
 | |
|       Matrix H2_Pose = gtsam::numericalDerivative11<POSE, VELOCITY>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, Pose1, _1, Bias1, Pose2, Vel2), Vel1);
 | |
|       Matrix H2_Vel = gtsam::numericalDerivative11<VELOCITY, VELOCITY>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, Pose1, _1, Bias1, Pose2, Vel2), Vel1);
 | |
|       *H2 = stack(2, &H2_Pose, &H2_Vel);
 | |
|     }
 | |
| 
 | |
|     // Jacobian w.r.t. IMUBias1
 | |
|     if (H3){
 | |
|       Matrix H3_Pose = gtsam::numericalDerivative11<POSE, IMUBIAS>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, Pose1, Vel1, _1, Pose2, Vel2), Bias1);
 | |
|       Matrix H3_Vel = gtsam::numericalDerivative11<VELOCITY, IMUBIAS>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, Pose1, Vel1, _1, Pose2, Vel2), Bias1);
 | |
|       *H3 = stack(2, &H3_Pose, &H3_Vel);
 | |
|     }
 | |
| 
 | |
|     // Jacobian w.r.t. Pose2
 | |
|     if (H4){
 | |
|       Matrix H4_Pose = gtsam::numericalDerivative11<POSE, POSE>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, Pose1, Vel1, Bias1, _1, Vel2), Pose2);
 | |
|       Matrix H4_Vel = gtsam::numericalDerivative11<VELOCITY, POSE>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, Pose1, Vel1, Bias1, _1, Vel2), Pose2);
 | |
|       *H4 = stack(2, &H4_Pose, &H4_Vel);
 | |
|     }
 | |
| 
 | |
|     // Jacobian w.r.t. Vel2
 | |
|     if (H5){
 | |
|       Matrix H5_Pose = gtsam::numericalDerivative11<POSE, VELOCITY>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluatePoseError, this, Pose1, Vel1, Bias1, Pose2, _1), Vel2);
 | |
|       Matrix H5_Vel = gtsam::numericalDerivative11<VELOCITY, VELOCITY>(boost::bind(&InertialNavFactor_GlobalVelocity::evaluateVelocityError, this, Pose1, Vel1, Bias1, Pose2, _1), Vel2);
 | |
|       *H5 = stack(2, &H5_Pose, &H5_Vel);
 | |
|     }
 | |
| 
 | |
| 		Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Bias1, Pose2, Vel2)));
 | |
| 		Vector ErrVelVector(VELOCITY::Logmap(evaluateVelocityError(Pose1, Vel1, Bias1, Pose2, Vel2)));
 | |
| 
 | |
| 		return concatVectors(2, &ErrPoseVector, &ErrVelVector);
 | |
| 	}
 | |
| 
 | |
| 	static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
 | |
| 			const noiseModel::Gaussian::shared_ptr& gaussian_process){
 | |
| 
 | |
| 		Matrix cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
 | |
| 		Matrix cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
 | |
| 		Matrix cov_process = inverse( gaussian_process->R().transpose() * gaussian_process->R() );
 | |
| 
 | |
| 		cov_process.block(0,0, 3,3) += cov_gyro;
 | |
| 		cov_process.block(6,6, 3,3) += cov_acc;
 | |
| 
 | |
| 		return noiseModel::Gaussian::Covariance(cov_process);
 | |
| 	}
 | |
| 
 | |
|   static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial,
 | |
|       Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
 | |
| 
 | |
|     Matrix ENU_to_NED = Matrix_(3, 3,
 | |
|         0.0,  1.0,  0.0,
 | |
|         1.0,  0.0,  0.0,
 | |
|         0.0,  0.0, -1.0);
 | |
| 
 | |
|     Matrix NED_to_ENU = Matrix_(3, 3,
 | |
|         0.0,  1.0,  0.0,
 | |
|         1.0,  0.0,  0.0,
 | |
|         0.0,  0.0, -1.0);
 | |
| 
 | |
|     // Convert incoming parameters to ENU
 | |
|     Vector Pos_ENU = NED_to_ENU * Pos_NED;
 | |
|     Vector Vel_ENU = NED_to_ENU * Vel_NED;
 | |
|     Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
 | |
| 
 | |
|     // Call ENU version
 | |
|     Vector g_ENU;
 | |
|     Vector rho_ENU;
 | |
|     Vector omega_earth_ENU;
 | |
|     Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
 | |
| 
 | |
|     // Convert output to NED
 | |
|     g_NED = ENU_to_NED * g_ENU;
 | |
|     rho_NED = ENU_to_NED * rho_ENU;
 | |
|     omega_earth_NED = ENU_to_NED * omega_earth_ENU;
 | |
|   }
 | |
| 
 | |
| 	static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial,
 | |
| 			Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
 | |
| 		double R0 = 6.378388e6;
 | |
| 		double e = 1/297;
 | |
| 		double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
 | |
| 
 | |
| 		// Calculate current lat, lon
 | |
| 		Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
 | |
| 		double delta_lat(delta_Pos_ENU(1)/Re);
 | |
| 		double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
 | |
| 		double lat_new(LatLonHeight_IC(0) + delta_lat);
 | |
| 		double lon_new(LatLonHeight_IC(1) + delta_lon);
 | |
| 
 | |
| 		// Rotation of lon about z axis
 | |
| 		Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
 | |
| 				-sin(lon_new), cos(lon_new), 0.0,
 | |
| 				0.0, 0.0, 1.0);
 | |
| 
 | |
| 		// Rotation of lat about y axis
 | |
| 		Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
 | |
| 				0.0, 1.0, 0.0,
 | |
| 				-sin(lat_new), 0.0, cos(lat_new));
 | |
| 
 | |
| 		Rot3 UEN_to_ENU(0, 1, 0,
 | |
| 				0, 0, 1,
 | |
| 				1, 0, 0);
 | |
| 
 | |
| 		Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
 | |
| 
 | |
| 		Vector omega_earth_ECEF(Vector_(3, 0.0, 0.0, 7.292115e-5));
 | |
| 		omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
 | |
| 
 | |
| 		// Calculating g
 | |
| 		double height(LatLonHeight_IC(2));
 | |
| 		double EQUA_RADIUS = 6378137.0;    		// equatorial radius of the earth; WGS-84
 | |
| 		double ECCENTRICITY = 0.0818191908426;  // eccentricity of the earth ellipsoid
 | |
| 		double e2( pow(ECCENTRICITY,2) );
 | |
| 		double den( 1-e2*pow(sin(lat_new),2) );
 | |
| 		double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
 | |
| 		double Rp( EQUA_RADIUS/( sqrt(den) ) );
 | |
| 		double Ro( sqrt(Rp*Rm) );   				// mean earth radius of curvature
 | |
| 		double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
 | |
| 		double g_calc( g0/( pow(1 + height/Ro, 2) ) );
 | |
| 		g_ENU = Vector_(3, 0.0, 0.0, -g_calc);
 | |
| 
 | |
| 
 | |
| 		// Calculate rho
 | |
| 		double Ve( Vel_ENU(0) );
 | |
| 		double Vn( Vel_ENU(1) );
 | |
| 		double rho_E = -Vn/(Rm + height);
 | |
| 		double rho_N = Ve/(Rp + height);
 | |
| 		double rho_U = Ve*tan(lat_new)/(Rp + height);
 | |
| 		rho_ENU = Vector_(3, rho_E, rho_N, rho_U);
 | |
| 	}
 | |
| 
 | |
| 	static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){
 | |
| 	    /* Q_d (approx)= Q * delta_t */
 | |
| 	    /* In practice, square root of the information matrix is represented, so that:
 | |
| 	     *  R_d (approx)= R / sqrt(delta_t)
 | |
| 	     * */
 | |
| 	    return noiseModel::Gaussian::SqrtInformation(model->R()/std::sqrt(delta_t));
 | |
| 	}
 | |
| 
 | |
| private:
 | |
| 
 | |
| 	/** Serialization function */
 | |
| 	friend class boost::serialization::access;
 | |
| 	template<class ARCHIVE>
 | |
| 	void serialize(ARCHIVE & ar, const unsigned int version) {
 | |
| 		ar & boost::serialization::make_nvp("NonlinearFactor2",
 | |
| 				boost::serialization::base_object<Base>(*this));
 | |
| 	}
 | |
| 
 | |
| }; // \class GaussMarkov1stOrderFactor
 | |
| 
 | |
| 
 | |
| } /// namespace aspn
 |