591 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			591 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
| 
 | |
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file   EquivInertialNavFactor_GlobalVel_NoBias.h
 | |
|  *  @author Vadim Indelman, Stephen Williams
 | |
|  *  @brief  Equivalent inertial navigation factor (velocity in the global frame), without bias state.
 | |
|  *  @date   May 9, 2013
 | |
|  **/
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/linear/NoiseModel.h>
 | |
| #include <gtsam/geometry/Rot3.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| 
 | |
| // Using numerical derivative to calculate d(Pose3::Expmap)/dw
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| 
 | |
| 
 | |
| #include <ostream>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /*
 | |
|  * NOTES:
 | |
|  * =====
 | |
|  * Concept: Based on [Lupton12tro]
 | |
|  * - Pre-integrate IMU measurements using the static function PreIntegrateIMUObservations.
 | |
|  *    Pre-integrated quantities are expressed in the body system of t0 - the first time instant (in which pre-integration began).
 | |
|  *    All sensor-to-body transformations are performed here.
 | |
|  * - If required, calculate inertial solution by calling the static functions: predictPose_inertial, predictVelocity_inertial.
 | |
|  * - When the time is right, incorporate pre-integrated IMU data by creating an EquivInertialNavFactor_GlobalVel_NoBias factor, which will
 | |
|  *   relate between navigation variables at the two time instances (t0 and current time).
 | |
|  *
 | |
|  * Other notes:
 | |
|  * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame.
 | |
|  * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames.
 | |
|  * - Camera and IMU frames are identical
 | |
|  * - The user should specify a continuous equivalent noise covariance, which can be calculated using
 | |
|  *   the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance
 | |
|  *   matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a
 | |
|  *   discrete form using the supplied delta_t between sub-sequential measurements.
 | |
|  * - Earth-rate correction:
 | |
|  *     + Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global
 | |
|  *       frame (Local-Level system: ENU or NED, see above).
 | |
|  *     + R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system.
 | |
|  *    + Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant.
 | |
|  *      Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon.
 | |
|  *
 | |
|  * - Frame Notation:
 | |
|  *   Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame}
 | |
|  *   So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor
 | |
|  *   And the transformation from the body frame to the world frame would be: world_P_body
 | |
|  *   This allows visual chaining. For example, converting the sensed angular velocity of the IMU
 | |
|  *   (angular velocity of the sensor in the sensor frame) into the world frame can be performed as:
 | |
|  *       world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor
 | |
|  *
 | |
|  *
 | |
|  * - Common Quantity Types
 | |
|  *   P : pose/3d transformation
 | |
|  *   R : rotation
 | |
|  *   omega : angular velocity
 | |
|  *   t : translation
 | |
|  *   v : velocity
 | |
|  *   a : acceleration
 | |
|  *
 | |
|  * - Common Frames
 | |
|  *   sensor : the coordinate system attached to the sensor origin
 | |
|  *   body   : the coordinate system attached to body/inertial frame.
 | |
|  *            Unless an optional frame transformation is provided, the
 | |
|  *            sensor frame and the body frame will be identical
 | |
|  *   world  : the global/world coordinate frame. This is assumed to be
 | |
|  *            a tangent plane to the earth's surface somewhere near the
 | |
|  *            vehicle
 | |
|  */
 | |
| 
 | |
| template<class POSE, class VELOCITY>
 | |
| class EquivInertialNavFactor_GlobalVel_NoBias : public NoiseModelFactorN<POSE, VELOCITY, POSE, VELOCITY> {
 | |
| 
 | |
| private:
 | |
| 
 | |
|   typedef EquivInertialNavFactor_GlobalVel_NoBias<POSE, VELOCITY> This;
 | |
|   typedef NoiseModelFactorN<POSE, VELOCITY, POSE, VELOCITY> Base;
 | |
| 
 | |
|   Vector delta_pos_in_t0_;
 | |
|   Vector delta_vel_in_t0_;
 | |
|   Vector3 delta_angles_;
 | |
|   double dt12_;
 | |
| 
 | |
|   Vector world_g_;
 | |
|   Vector world_rho_;
 | |
|   Vector world_omega_earth_;
 | |
| 
 | |
|   Matrix Jacobian_wrt_t0_Overall_;
 | |
| 
 | |
|   std::optional<POSE> body_P_sensor_;   // The pose of the sensor in the body frame
 | |
| 
 | |
| public:
 | |
| 
 | |
|   // Provide access to the Matrix& version of evaluateError:
 | |
|   using Base::evaluateError;
 | |
| 
 | |
|   // shorthand for a smart pointer to a factor
 | |
|   typedef typename std::shared_ptr<EquivInertialNavFactor_GlobalVel_NoBias> shared_ptr;
 | |
| 
 | |
|   /** default constructor - only use for serialization */
 | |
|   EquivInertialNavFactor_GlobalVel_NoBias() {}
 | |
| 
 | |
|   /** Constructor */
 | |
|   EquivInertialNavFactor_GlobalVel_NoBias(const Key& Pose1, const Key& Vel1, const Key& Pose2, const Key& Vel2,
 | |
|       const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles,
 | |
|       double dt12, const Vector world_g, const Vector world_rho,
 | |
|       const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_equivalent,
 | |
|       const Matrix& Jacobian_wrt_t0_Overall,
 | |
|       std::optional<POSE> body_P_sensor = {}) :
 | |
|         Base(model_equivalent, Pose1, Vel1, Pose2, Vel2),
 | |
|         delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles),
 | |
|         dt12_(dt12), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), Jacobian_wrt_t0_Overall_(Jacobian_wrt_t0_Overall),
 | |
|         body_P_sensor_(body_P_sensor) {  }
 | |
| 
 | |
|   virtual ~EquivInertialNavFactor_GlobalVel_NoBias() {}
 | |
| 
 | |
|   /** implement functions needed for Testable */
 | |
| 
 | |
|   /** print */
 | |
|   virtual void print(
 | |
|       const std::string& s = "EquivInertialNavFactor_GlobalVel_NoBias",
 | |
|       const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | |
|     std::cout << s << "("
 | |
|         << keyFormatter(this->key<1>()) << ","
 | |
|         << keyFormatter(this->key<2>()) << ","
 | |
|         << keyFormatter(this->key<3>()) << ","
 | |
|         << keyFormatter(this->key<4>()) << "\n";
 | |
|     std::cout << "delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
 | |
|     std::cout << "delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
 | |
|     std::cout << "delta_angles: " << this->delta_angles_ << std::endl;
 | |
|     std::cout << "dt12: " << this->dt12_ << std::endl;
 | |
|     std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl;
 | |
|     std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
 | |
|     std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
 | |
|     if(this->body_P_sensor_)
 | |
|       this->body_P_sensor_->print("  sensor pose in body frame: ");
 | |
|     this->noiseModel_->print("  noise model");
 | |
|   }
 | |
| 
 | |
|   /** equals */
 | |
|   bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
 | |
|     const This *e =  dynamic_cast<const This*> (&expected);
 | |
|     return e != nullptr && Base::equals(*e, tol)
 | |
|     && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol
 | |
|     && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol
 | |
|     && (delta_angles_ - e->delta_angles_).norm() < tol
 | |
|     && (dt12_ - e->dt12_) < tol
 | |
|     && (world_g_ - e->world_g_).norm() < tol
 | |
|     && (world_rho_ - e->world_rho_).norm() < tol
 | |
|     && (world_omega_earth_ - e->world_omega_earth_).norm() < tol
 | |
|     && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
 | |
|   }
 | |
| 
 | |
| 
 | |
|   POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1) const {
 | |
| 
 | |
|     /* Position term */
 | |
|     Vector delta_pos_in_t0_corrected = delta_pos_in_t0_;
 | |
| 
 | |
|     /* Rotation term */
 | |
|     Vector delta_angles_corrected = delta_angles_;
 | |
| 
 | |
|     return predictPose_inertial(Pose1, Vel1,
 | |
|         delta_pos_in_t0_corrected, delta_angles_corrected,
 | |
|           dt12_, world_g_, world_rho_, world_omega_earth_);
 | |
|   }
 | |
| 
 | |
|   static inline POSE predictPose_inertial(const POSE& Pose1, const VELOCITY& Vel1,
 | |
|       const Vector& delta_pos_in_t0, const Vector3& delta_angles,
 | |
|       const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth){
 | |
| 
 | |
|     const POSE& world_P1_body = Pose1;
 | |
|     const VELOCITY& world_V1_body = Vel1;
 | |
| 
 | |
|     /* Position term */
 | |
|     Vector body_deltaPos_body = delta_pos_in_t0;
 | |
| 
 | |
|     Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
 | |
|     Vector world_deltaPos_body     = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body;
 | |
| 
 | |
|     // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | |
|     world_deltaPos_body -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12;
 | |
| 
 | |
|     /* TODO: the term dt12*dt12 in 0.5*world_g*dt12*dt12 is not entirely correct:
 | |
|      *  the gravity should be canceled from the accelerometer measurements, bust since position
 | |
|      *  is added with a delta velocity from a previous term, the actual delta time is more complicated.
 | |
|      *  Need to figure out this in the future - currently because of this issue we'll get some more error
 | |
|      *  in Z axis.
 | |
|      */
 | |
| 
 | |
|     /* Rotation term */
 | |
|     Vector body_deltaAngles_body = delta_angles;
 | |
| 
 | |
|     // Convert earth-related terms into the body frame
 | |
|     Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
 | |
|     Vector body_rho = body_R_world * world_rho;
 | |
|     Vector body_omega_earth = body_R_world * world_omega_earth;
 | |
| 
 | |
|     // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | |
|     body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
 | |
| 
 | |
|     return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() + typename POSE::Translation(world_deltaPos_body));
 | |
| 
 | |
|   }
 | |
| 
 | |
|   VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1) const {
 | |
| 
 | |
| 
 | |
|     Vector delta_vel_in_t0_corrected = delta_vel_in_t0_;
 | |
| 
 | |
|     return predictVelocity_inertial(Pose1, Vel1,
 | |
|         delta_vel_in_t0_corrected,
 | |
|           dt12_, world_g_, world_rho_, world_omega_earth_);
 | |
|   }
 | |
| 
 | |
|   static inline VELOCITY predictVelocity_inertial(const POSE& Pose1, const VELOCITY& Vel1,
 | |
|       const Vector& delta_vel_in_t0,
 | |
|       const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth) {
 | |
| 
 | |
|     const POSE& world_P1_body = Pose1;
 | |
|     const VELOCITY& world_V1_body = Vel1;
 | |
| 
 | |
|     Vector body_deltaVel_body = delta_vel_in_t0;
 | |
|     Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
 | |
| 
 | |
|     VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 );
 | |
| 
 | |
|     // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2.
 | |
|     VelDelta -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12;
 | |
| 
 | |
|     // Predict
 | |
|     return Vel1.compose( VelDelta );
 | |
| 
 | |
|   }
 | |
| 
 | |
|   void predict(const POSE& Pose1, const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2) const {
 | |
|     Pose2 = predictPose(Pose1, Vel1);
 | |
|     Vel2  = predictVelocity(Pose1, Vel1);
 | |
|   }
 | |
| 
 | |
|   POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2) const {
 | |
|     // Predict
 | |
|     POSE Pose2Pred = predictPose(Pose1, Vel1);
 | |
| 
 | |
|     // Calculate error
 | |
|     return Pose2.between(Pose2Pred);
 | |
|   }
 | |
| 
 | |
|   VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2) const {
 | |
|     // Predict
 | |
|     VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1);
 | |
| 
 | |
|     // Calculate error
 | |
|     return Vel2.between(Vel2Pred);
 | |
|   }
 | |
| 
 | |
|   Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const POSE& Pose2, const VELOCITY& Vel2,
 | |
|       OptionalMatrixType H1, OptionalMatrixType H2, OptionalMatrixType H3,
 | |
|       OptionalMatrixType H4) const {
 | |
| 
 | |
|     // TODO: Write analytical derivative calculations
 | |
|     // Jacobian w.r.t. Pose1
 | |
|     if (H1){
 | |
|       Matrix H1_Pose = numericalDerivative11<POSE, POSE>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, _1, Vel1, Pose2, Vel2), Pose1);
 | |
|       Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, _1, Vel1, Pose2, Vel2), Pose1);
 | |
|       *H1 = stack(2, &H1_Pose, &H1_Vel);
 | |
|     }
 | |
| 
 | |
|     // Jacobian w.r.t. Vel1
 | |
|     if (H2){
 | |
|       Matrix H2_Pose = numericalDerivative11<POSE, VELOCITY>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, _1, Pose2, Vel2), Vel1);
 | |
|       Matrix H2_Vel = numericalDerivative11<VELOCITY, VELOCITY>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, _1, Pose2, Vel2), Vel1);
 | |
|       *H2 = stack(2, &H2_Pose, &H2_Vel);
 | |
|     }
 | |
| 
 | |
|     // Jacobian w.r.t. Pose2
 | |
|     if (H3){
 | |
|       Matrix H3_Pose = numericalDerivative11<POSE, POSE>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, Vel1, _1, Vel2), Pose2);
 | |
|       Matrix H3_Vel = numericalDerivative11<VELOCITY, POSE>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, Vel1, _1, Vel2), Pose2);
 | |
|       *H3 = stack(2, &H3_Pose, &H3_Vel);
 | |
|     }
 | |
| 
 | |
|     // Jacobian w.r.t. Vel2
 | |
|     if (H4){
 | |
|       Matrix H4_Pose = numericalDerivative11<POSE, VELOCITY>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluatePoseError, this, Pose1, Vel1, Pose2, _1), Vel2);
 | |
|       Matrix H4_Vel = numericalDerivative11<VELOCITY, VELOCITY>(std::bind(&EquivInertialNavFactor_GlobalVel_NoBias::evaluateVelocityError, this, Pose1, Vel1, Pose2, _1), Vel2);
 | |
|       *H4 = stack(2, &H4_Pose, &H4_Vel);
 | |
|     }
 | |
| 
 | |
|     Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Pose2, Vel2)));
 | |
|     Vector ErrVelVector(VELOCITY::Logmap(evaluateVelocityError(Pose1, Vel1, Pose2, Vel2)));
 | |
| 
 | |
|     return concatVectors(2, &ErrPoseVector, &ErrVelVector);
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
|   static inline POSE PredictPoseFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1,
 | |
|       const Vector& delta_pos_in_t0, const Vector3& delta_angles,
 | |
|       double dt12, const Vector world_g, const Vector world_rho,
 | |
|       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) {
 | |
| 
 | |
|     /* Position term */
 | |
|     Vector delta_pos_in_t0_corrected = delta_pos_in_t0;
 | |
| 
 | |
|     /* Rotation term */
 | |
|     Vector delta_angles_corrected = delta_angles;
 | |
|     // Another alternative:
 | |
|     //    Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) );
 | |
| 
 | |
|     return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth);
 | |
|   }
 | |
| 
 | |
|   static inline VELOCITY PredictVelocityFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1,
 | |
|       const Vector& delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho,
 | |
|       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) {
 | |
| 
 | |
|     Vector delta_vel_in_t0_corrected = delta_vel_in_t0;
 | |
| 
 | |
|     return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth);
 | |
|   }
 | |
| 
 | |
|   static inline void PredictFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, POSE& Pose2, VELOCITY& Vel2,
 | |
|       const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles,
 | |
|       double dt12, const Vector world_g, const Vector world_rho,
 | |
|       const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall) {
 | |
| 
 | |
|     Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall);
 | |
|     Vel2  = PredictVelocityFromPreIntegration(Pose1, Vel1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   static inline void PreIntegrateIMUObservations(const Vector& msr_acc_t, const Vector& msr_gyro_t, const double msr_dt,
 | |
|       Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0, double& delta_t,
 | |
|       const noiseModel::Gaussian::shared_ptr& model_continuous_overall,
 | |
|       Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall,
 | |
|       std::optional<POSE> p_body_P_sensor = {}){
 | |
|     // Note: all delta terms refer to an IMU\sensor system at t0
 | |
|     // Note: Earth-related terms are not accounted here but are incorporated in predict functions.
 | |
| 
 | |
|     POSE body_P_sensor = POSE();
 | |
|     bool flag_use_body_P_sensor = false;
 | |
|     if (p_body_P_sensor){
 | |
|       body_P_sensor = *p_body_P_sensor;
 | |
|       flag_use_body_P_sensor = true;
 | |
|     }
 | |
| 
 | |
|     delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0);
 | |
|     delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor);
 | |
|     delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor);
 | |
| 
 | |
|     delta_t += msr_dt;
 | |
| 
 | |
|     // Update EquivCov_Overall
 | |
|     Matrix Z_3x3 = Z_3x3;
 | |
|     Matrix I_3x3 = I_3x3;
 | |
| 
 | |
|     Matrix H_pos_pos = numericalDerivative11<Vector, Vector>(std::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, _1, delta_vel_in_t0), delta_pos_in_t0);
 | |
|     Matrix H_pos_vel = numericalDerivative11<Vector, Vector>(std::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, delta_pos_in_t0, _1), delta_vel_in_t0);
 | |
|     Matrix H_pos_angles = Z_3x3;
 | |
| 
 | |
|     Matrix H_vel_vel = numericalDerivative11<Vector, Vector>(std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, _1, flag_use_body_P_sensor, body_P_sensor), delta_vel_in_t0);
 | |
|     Matrix H_vel_angles = numericalDerivative11<Vector, Vector>(std::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, _1, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor), delta_angles);
 | |
|     Matrix H_vel_pos = Z_3x3;
 | |
| 
 | |
|     Matrix H_angles_angles = numericalDerivative11<Vector, Vector>(std::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, _1, flag_use_body_P_sensor, body_P_sensor), delta_angles);
 | |
|     Matrix H_angles_pos = Z_3x3;
 | |
|     Matrix H_angles_vel = Z_3x3;
 | |
| 
 | |
|     Matrix F_angles = collect(3, &H_angles_angles, &H_angles_pos, &H_angles_vel);
 | |
|     Matrix F_pos    = collect(3, &H_pos_angles, &H_pos_pos, &H_pos_vel);
 | |
|     Matrix F_vel    = collect(3, &H_vel_angles, &H_vel_pos, &H_vel_vel);
 | |
|     Matrix F = stack(3, &F_angles, &F_pos, &F_vel);
 | |
| 
 | |
|     noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt );
 | |
|     Matrix Q_d = inverse(model_discrete_curr->R().transpose() * model_discrete_curr->R() );
 | |
| 
 | |
|     EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d;
 | |
| 
 | |
|     // Update Jacobian_wrt_t0_Overall
 | |
|     Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall;
 | |
|   }
 | |
| 
 | |
|   static inline Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt,
 | |
|       const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0){
 | |
| 
 | |
|     // Note: all delta terms refer to an IMU\sensor system at t0
 | |
|     // Note: delta_vel_in_t0 is already in body frame, so no need to use the body_P_sensor transformation here.
 | |
| 
 | |
|     return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
|   static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
 | |
|       const Vector3& delta_angles, const Vector& delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE& body_P_sensor){
 | |
| 
 | |
|     // Note: all delta terms refer to an IMU\sensor system at t0
 | |
| 
 | |
|     // Calculate the corrected measurements using the Bias object
 | |
|     Vector AccCorrected  = msr_acc_t;
 | |
|     Vector body_t_a_body;
 | |
|     if (flag_use_body_P_sensor){
 | |
|       Matrix body_R_sensor = body_P_sensor.rotation().matrix();
 | |
| 
 | |
|       Vector GyroCorrected(msr_gyro_t);
 | |
| 
 | |
|       Vector body_omega_body = body_R_sensor * GyroCorrected;
 | |
|       Matrix body_omega_body__cross = skewSymmetric(body_omega_body);
 | |
| 
 | |
|       body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector();
 | |
|     } else{
 | |
|       body_t_a_body = AccCorrected;
 | |
|     }
 | |
| 
 | |
|     Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
 | |
| 
 | |
|     return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
 | |
|       const Vector3& delta_angles, const bool flag_use_body_P_sensor, const POSE& body_P_sensor){
 | |
| 
 | |
|     // Note: all delta terms refer to an IMU\sensor system at t0
 | |
| 
 | |
|     // Calculate the corrected measurements using the Bias object
 | |
|     Vector GyroCorrected = msr_gyro_t;
 | |
| 
 | |
|     Vector body_t_omega_body;
 | |
|     if (flag_use_body_P_sensor){
 | |
|       body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected;
 | |
|     } else {
 | |
|       body_t_omega_body = GyroCorrected;
 | |
|     }
 | |
| 
 | |
|     Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
 | |
| 
 | |
|     R_t_to_t0    = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
 | |
|     return Rot3::Logmap(R_t_to_t0);
 | |
|   }
 | |
| 
 | |
|   static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
 | |
|       const noiseModel::Gaussian::shared_ptr& gaussian_process){
 | |
| 
 | |
|     Matrix cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
 | |
|     Matrix cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
 | |
|     Matrix cov_process = inverse( gaussian_process->R().transpose() * gaussian_process->R() );
 | |
| 
 | |
|     cov_process.block(0,0, 3,3) += cov_gyro;
 | |
|     cov_process.block(6,6, 3,3) += cov_acc;
 | |
| 
 | |
|     return noiseModel::Gaussian::Covariance(cov_process);
 | |
|   }
 | |
| 
 | |
|   static inline void CalcEquivalentNoiseCov_DifferentParts(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro,
 | |
|       const noiseModel::Gaussian::shared_ptr& gaussian_process,
 | |
|       Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){
 | |
| 
 | |
|     cov_acc = inverse( gaussian_acc->R().transpose() * gaussian_acc->R() );
 | |
|     cov_gyro = inverse( gaussian_gyro->R().transpose() * gaussian_gyro->R() );
 | |
|     cov_process_without_acc_gyro = inverse( gaussian_process->R().transpose() * gaussian_process->R() );
 | |
|   }
 | |
| 
 | |
|   static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial,
 | |
|       Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) {
 | |
| 
 | |
|     Matrix ENU_to_NED = (Matrix(3, 3) <<
 | |
|         0.0,  1.0,  0.0,
 | |
|         1.0,  0.0,  0.0,
 | |
|         0.0,  0.0, -1.0).finished();
 | |
| 
 | |
|     Matrix NED_to_ENU = (Matrix(3, 3) <<
 | |
|         0.0,  1.0,  0.0,
 | |
|         1.0,  0.0,  0.0,
 | |
|         0.0,  0.0, -1.0).finished();
 | |
| 
 | |
|     // Convert incoming parameters to ENU
 | |
|     Vector Pos_ENU = NED_to_ENU * Pos_NED;
 | |
|     Vector Vel_ENU = NED_to_ENU * Vel_NED;
 | |
|     Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
 | |
| 
 | |
|     // Call ENU version
 | |
|     Vector g_ENU;
 | |
|     Vector rho_ENU;
 | |
|     Vector omega_earth_ENU;
 | |
|     Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU);
 | |
| 
 | |
|     // Convert output to NED
 | |
|     g_NED = ENU_to_NED * g_ENU;
 | |
|     rho_NED = ENU_to_NED * rho_ENU;
 | |
|     omega_earth_NED = ENU_to_NED * omega_earth_ENU;
 | |
|   }
 | |
| 
 | |
|   static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial,
 | |
|       Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){
 | |
|     double R0 = 6.378388e6;
 | |
|     double e = 1/297;
 | |
|     double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) );
 | |
| 
 | |
|     // Calculate current lat, lon
 | |
|     Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
 | |
|     double delta_lat(delta_Pos_ENU(1)/Re);
 | |
|     double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0))));
 | |
|     double lat_new(LatLonHeight_IC(0) + delta_lat);
 | |
|     double lon_new(LatLonHeight_IC(1) + delta_lon);
 | |
| 
 | |
|     // Rotation of lon about z axis
 | |
|     Rot3 C1(cos(lon_new), sin(lon_new), 0.0,
 | |
|         -sin(lon_new), cos(lon_new), 0.0,
 | |
|         0.0, 0.0, 1.0);
 | |
| 
 | |
|     // Rotation of lat about y axis
 | |
|     Rot3 C2(cos(lat_new), 0.0, sin(lat_new),
 | |
|         0.0, 1.0, 0.0,
 | |
|         -sin(lat_new), 0.0, cos(lat_new));
 | |
| 
 | |
|     Rot3 UEN_to_ENU(0, 1, 0,
 | |
|         0, 0, 1,
 | |
|         1, 0, 0);
 | |
| 
 | |
|     Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 );
 | |
| 
 | |
|     Vector omega_earth_ECEF((Vector(3) << 0.0, 0.0, 7.292115e-5));
 | |
|     omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF;
 | |
| 
 | |
|     // Calculating g
 | |
|     double height(LatLonHeight_IC(2));
 | |
|     double EQUA_RADIUS = 6378137.0;        // equatorial radius of the earth; WGS-84
 | |
|     double ECCENTRICITY = 0.0818191908426;  // eccentricity of the earth ellipsoid
 | |
|     double e2( pow(ECCENTRICITY,2) );
 | |
|     double den( 1-e2*pow(sin(lat_new),2) );
 | |
|     double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) );
 | |
|     double Rp( EQUA_RADIUS/( sqrt(den) ) );
 | |
|     double Ro( sqrt(Rp*Rm) );           // mean earth radius of curvature
 | |
|     double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) );
 | |
|     double g_calc( g0/( pow(1 + height/Ro, 2) ) );
 | |
|     g_ENU = (Vector(3) << 0.0, 0.0, -g_calc);
 | |
| 
 | |
| 
 | |
|     // Calculate rho
 | |
|     double Ve( Vel_ENU(0) );
 | |
|     double Vn( Vel_ENU(1) );
 | |
|     double rho_E = -Vn/(Rm + height);
 | |
|     double rho_N = Ve/(Rp + height);
 | |
|     double rho_U = Ve*tan(lat_new)/(Rp + height);
 | |
|     rho_ENU = (Vector(3) << rho_E, rho_N, rho_U);
 | |
|   }
 | |
| 
 | |
|   static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){
 | |
|       /* Q_d (approx)= Q * delta_t */
 | |
|       /* In practice, square root of the information matrix is represented, so that:
 | |
|        *  R_d (approx)= R / sqrt(delta_t)
 | |
|        * */
 | |
|       return noiseModel::Gaussian::SqrtInformation(model->R()/sqrt(delta_t));
 | |
|     }
 | |
| private:
 | |
| 
 | |
| #ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
 | |
|   /** Serialization function */
 | |
|   friend class boost::serialization::access;
 | |
|   template<class ARCHIVE>
 | |
|   void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
 | |
|     ar & boost::serialization::make_nvp("NonlinearFactor2",
 | |
|         boost::serialization::base_object<Base>(*this));
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| }; // \class EquivInertialNavFactor_GlobalVel_NoBias
 | |
| 
 | |
| } /// namespace gtsam
 |