191 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    Rot3.cpp
 | |
|  * @brief   Rotation (internal: 3*3 matrix representation*)
 | |
|  * @author  Alireza Fathi
 | |
|  * @author  Christian Potthast
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include "Rot3.h"
 | |
| 
 | |
| using namespace std;
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   bool Rot3::equals(const Rot3 & R, double tol) const {
 | |
|     return equal_with_abs_tol(matrix(), R.matrix(), tol);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   //  Vector Rot3::vector() const {
 | |
|   //    double r[] = { r1_.x(), r1_.y(), r1_.z(),
 | |
|   //	     r2_.x(), r2_.y(), r2_.z(),
 | |
|   //	     r3_.x(), r3_.y(), r3_.z() };
 | |
|   //    Vector v(9);
 | |
|   //    copy(r,r+9,v.begin());
 | |
|   //    return v;
 | |
|   //  }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Rot3::matrix() const {
 | |
|     double r[] = { r1_.x(), r2_.x(), r3_.x(),
 | |
|         r1_.y(), r2_.y(), r3_.y(),
 | |
|         r1_.z(), r2_.z(), r3_.z() };
 | |
|     return Matrix_(3,3, r);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Rot3::transpose() const {
 | |
|     double r[] = { r1_.x(), r1_.y(), r1_.z(),
 | |
|         r2_.x(), r2_.y(), r2_.z(),
 | |
|         r3_.x(), r3_.y(), r3_.z()};
 | |
|     return Matrix_(3,3, r);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Point3 Rot3::column(int index) const{
 | |
|     if(index == 3)
 | |
|       return r3_;
 | |
|     else if (index == 2)
 | |
|       return r2_;
 | |
|     else
 | |
|       return r1_; // default returns r1
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Vector Rot3::ypr() const {
 | |
|     Matrix I;Vector q;
 | |
|     boost::tie(I,q)=RQ(matrix());
 | |
|     return q;
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Rot3 rodriguez(const Vector& n, double t) {
 | |
|     double n0 = n(0), n1=n(1), n2=n(2);
 | |
|     double n00 = n0*n0, n11 = n1*n1, n22 = n2*n2;
 | |
| #ifndef NDEBUG
 | |
|     double l_n = n00+n11+n22;
 | |
|     if (fabs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1");
 | |
| #endif
 | |
| 
 | |
|     double ct = cos(t), st = sin(t), ct_1 = 1 - ct;
 | |
| 
 | |
|     double s0 = n0 * st, s1 = n1 * st, s2 = n2 * st;
 | |
|     double C01 = ct_1*n0*n1, C02 = ct_1*n0*n2, C12 = ct_1*n1*n2;
 | |
|     double C00 = ct_1*n00, C11 = ct_1*n11, C22 = ct_1*n22;
 | |
| 
 | |
|     Point3 r1 = Point3( ct + C00,  s2 + C01, -s1 + C02);
 | |
|     Point3 r2 = Point3(-s2 + C01,  ct + C11,  s0 + C12);
 | |
|     Point3 r3 = Point3( s1 + C02, -s0 + C12,  ct + C22);
 | |
| 
 | |
|     return Rot3(r1, r2, r3);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Rot3 rodriguez(const Vector& w) {
 | |
|     double t = norm_2(w);
 | |
|     if (t < 1e-5) return Rot3();
 | |
|     return rodriguez(w/t, t);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Point3 rotate(const Rot3& R, const Point3& p) {
 | |
|     return R.r1() * p.x() + R.r2() * p.y() + R.r3() * p.z();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Drotate1(const Rot3& R, const Point3& p) {
 | |
|     Point3 q = R * p;
 | |
|     return skewSymmetric(-q.x(), -q.y(), -q.z());
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Drotate2(const Rot3& R) {
 | |
|     return R.matrix();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Point3 unrotate(const Rot3& R, const Point3& p) {
 | |
|     return Point3(
 | |
|         R.r1().x() * p.x() + R.r1().y() * p.y() + R.r1().z() * p.z(),
 | |
|         R.r2().x() * p.x() + R.r2().y() * p.y() + R.r2().z() * p.z(),
 | |
|         R.r3().x() * p.x() + R.r3().y() * p.y() + R.r3().z() * p.z()
 | |
|     );
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   /** see libraries/caml/geometry/math.lyx, derivative of unrotate              */
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dunrotate1(const Rot3 & R, const Point3 & p) {
 | |
|     Point3 q = unrotate(R,p);
 | |
|     return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dunrotate2(const Rot3 & R) {
 | |
|     return R.transpose();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dcompose1(const Rot3& R1, const Rot3& R2){
 | |
|   	return eye(3);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dcompose2(const Rot3& R1, const Rot3& R2){
 | |
|     return R1.matrix();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dbetween1(const Rot3& R1, const Rot3& R2){
 | |
|   	return -between(R1,R2).matrix();
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   Matrix Dbetween2(const Rot3& R1, const Rot3& R2){
 | |
|     return eye(3);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
|   pair<Matrix,Vector> RQ(const Matrix& A) {
 | |
|     double A21 = A(2, 1), A22 = A(2, 2), a = sqrt(A21 * A21 + A22 * A22);
 | |
|     double Cx =  A22 / a; //cosX
 | |
|     double Sx = -A21 / a; //sinX
 | |
|     Matrix Qx = Matrix_(3, 3,
 | |
|         1.0, 0.0, 0.0,
 | |
|         0.0,  Cx, -Sx,
 | |
|         0.0,  Sx, Cx);
 | |
|     Matrix B = A * Qx;
 | |
| 
 | |
|     double B20 = B(2, 0), B22 = B(2, 2), b = sqrt(B20 * B20 + B22 * B22);
 | |
|     double Cy = B22 / b; //cosY
 | |
|     double Sy = B20 / b; //sinY
 | |
|     Matrix Qy = Matrix_(3,3,
 | |
|         Cy, 0.0,  Sy,
 | |
|         0.0, 1.0, 0.0,
 | |
|         -Sy, 0.0,  Cy);
 | |
|     Matrix C = B * Qy;
 | |
| 
 | |
|     double C10 = C(1, 0), C11 = C(1, 1), c = sqrt(C10 * C10 + C11 * C11);
 | |
|     double Cz =  C11 / c; //cosZ
 | |
|     double Sz = -C10 / c; //sinZ
 | |
|     Matrix Qz = Matrix_(3, 3,
 | |
|         Cz, -Sz, 0.0,
 | |
|         Sz,  Cz, 0.0,
 | |
|         0.0, 0.0, 1.0);
 | |
|     Matrix R = C * Qz;
 | |
| 
 | |
|     Vector angles(3);
 | |
|     angles(0) = -atan2(Sx, Cx);
 | |
|     angles(1) = -atan2(Sy, Cy);
 | |
|     angles(2) = -atan2(Sz, Cz);
 | |
| 
 | |
|     return make_pair(R,angles);
 | |
|   }
 | |
| 
 | |
|   /* ************************************************************************* */
 | |
| 
 | |
| } // namespace gtsam
 |