196 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | ||
| 
 | ||
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | ||
|  * Atlanta, Georgia 30332-0415
 | ||
|  * All Rights Reserved
 | ||
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | ||
| 
 | ||
|  * See LICENSE for the license information
 | ||
| 
 | ||
|  * -------------------------------------------------------------------------- */
 | ||
| 
 | ||
| /**
 | ||
|  * @file Lie.h
 | ||
|  * @brief Base class and basic functions for Lie types
 | ||
|  * @author Richard Roberts
 | ||
|  * @author Alex Cunningham
 | ||
|  */
 | ||
| 
 | ||
| #pragma once
 | ||
| 
 | ||
| #include <string>
 | ||
| 
 | ||
| #include <gtsam/base/Matrix.h>
 | ||
| 
 | ||
| namespace gtsam {
 | ||
| 
 | ||
|   /**
 | ||
|    * These core global functions can be specialized by new Lie types
 | ||
|    * for better performance.
 | ||
|    */
 | ||
| 
 | ||
|   /** Compute l0 s.t. l2=l1*l0 */
 | ||
|   template<class T>
 | ||
|   inline T between_default(const T& l1, const T& l2) { return l1.inverse().compose(l2); }
 | ||
| 
 | ||
|   /** Log map centered at l0, s.t. exp(l0,log(l0,lp)) = lp */
 | ||
|   template<class T>
 | ||
|   inline Vector logmap_default(const T& l0, const T& lp) { return T::Logmap(l0.between(lp)); }
 | ||
| 
 | ||
|   /** Exponential map centered at l0, s.t. exp(t,d) = t*exp(d) */
 | ||
|   template<class T>
 | ||
|   inline T expmap_default(const T& t, const Vector& d) { return t.compose(T::Expmap(d)); }
 | ||
| 
 | ||
|   /**
 | ||
|    * Base class for Lie group type
 | ||
|    * This class uses the Curiously Recurring Template design pattern to allow for
 | ||
|    * concept checking using a private function.
 | ||
|    *
 | ||
|    * T is the derived Lie type, like Point2, Pose3, etc.
 | ||
|    *
 | ||
|    * By convention, we use capital letters to designate a static function
 | ||
|    */
 | ||
|   template <class T>
 | ||
|   class Lie {
 | ||
|   private:
 | ||
| 
 | ||
| 	  /** concept checking function - implement the functions this demands */
 | ||
| 	  static void concept_check(const T& t) {
 | ||
| 
 | ||
| 		  /** assignment */
 | ||
| 		  T t2 = t;
 | ||
| 
 | ||
| 		  /**
 | ||
| 		   * Returns dimensionality of the tangent space
 | ||
| 		   */
 | ||
| 		  size_t dim_ret = t.dim();
 | ||
| 
 | ||
| 		  /**
 | ||
| 		   * Returns Exponential map update of T
 | ||
| 		   * Default implementation calls global binary function
 | ||
| 		   */
 | ||
| 		  T expmap_ret = t.expmap(gtsam::zero(dim_ret));
 | ||
| 
 | ||
| 		  /** expmap around identity */
 | ||
| 		  T expmap_identity_ret = T::Expmap(gtsam::zero(dim_ret));
 | ||
| 
 | ||
| 		  /**
 | ||
| 		   * Returns Log map
 | ||
| 		   * Default Implementation calls global binary function
 | ||
| 		   */
 | ||
| 		  Vector logmap_ret = t.logmap(t2);
 | ||
| 
 | ||
| 		  /** Logmap around identity */
 | ||
| 		  Vector logmap_identity_ret = T::Logmap(t);
 | ||
| 
 | ||
| 		  /** Compute l0 s.t. l2=l1*l0, where (*this) is l1 */
 | ||
| 		  T between_ret = t.between(t2);
 | ||
| 
 | ||
| 		  /** compose with another object */
 | ||
| 		  T compose_ret = t.compose(t2);
 | ||
| 
 | ||
| 		  /** invert the object and yield a new one */
 | ||
| 		  T inverse_ret = t.inverse();
 | ||
| 	  }
 | ||
| 
 | ||
| 	  /**
 | ||
| 	   * The necessary functions to implement for Lie are defined
 | ||
| 	   * below with additional details as to the interface.  The
 | ||
| 	   * concept checking function above will check whether or not
 | ||
| 	   * the function exists and throw compile-time errors.
 | ||
| 	   */
 | ||
| 
 | ||
| 
 | ||
| 	  /**
 | ||
| 	   * Returns dimensionality of the tangent space
 | ||
| 	   */
 | ||
| //	  inline size_t dim() const;
 | ||
| 
 | ||
| 	  /**
 | ||
| 	   * Returns Exponential map update of T
 | ||
| 	   * A default implementation of expmap(*this, lp) is available:
 | ||
| 	   * expmap_default()
 | ||
| 	   */
 | ||
| //	  T expmap(const Vector& v) const;
 | ||
| 
 | ||
| 	  /** expmap around identity */
 | ||
| //	  static T Expmap(const Vector& v);
 | ||
| 
 | ||
| 	  /**
 | ||
| 	   * Returns Log map
 | ||
| 	   * A default implementation of logmap(*this, lp) is available:
 | ||
| 	   * logmap_default()
 | ||
| 	   */
 | ||
| //	  Vector logmap(const T& lp) const;
 | ||
| 
 | ||
| 	  /** Logmap around identity */
 | ||
| //	  static Vector Logmap(const T& p);
 | ||
| 
 | ||
| 	  /**
 | ||
| 	   * Compute l0 s.t. l2=l1*l0, where (*this) is l1
 | ||
| 	   * A default implementation of between(*this, lp) is available:
 | ||
| 	   * between_default()
 | ||
| 	   */
 | ||
| //	  T between(const T& l2) const;
 | ||
| 
 | ||
| 	  /** compose with another object */
 | ||
| //	  inline T compose(const T& p) const;
 | ||
| 
 | ||
| 	  /** invert the object and yield a new one */
 | ||
| //	  inline T inverse() const;
 | ||
| 
 | ||
|   };
 | ||
|   
 | ||
|   /** Call print on the object */
 | ||
|   template<class T>
 | ||
|   inline void print(const T& object, const std::string& s = "") {
 | ||
|     object.print(s);
 | ||
|   }
 | ||
| 
 | ||
|   /** Call equal on the object */
 | ||
|   template<class T>
 | ||
|   inline bool equal(const T& obj1, const T& obj2, double tol) {
 | ||
|     return obj1.equals(obj2, tol);
 | ||
|   }
 | ||
| 
 | ||
|   /** Call equal on the object without tolerance (use default tolerance) */
 | ||
|   template<class T>
 | ||
|   inline bool equal(const T& obj1, const T& obj2) {
 | ||
|     return obj1.equals(obj2);
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    *  Three term approximation of the Baker<65>Campbell<6C>Hausdorff formula
 | ||
|    *  In non-commutative Lie groups, when composing exp(Z) = exp(X)exp(Y)
 | ||
|    *  it is not true that Z = X+Y. Instead, Z can be calculated using the BCH
 | ||
|    *  formula: Z = X + Y + [X,Y]/2 + [X-Y,[X,Y]]/12 - [Y,[X,[X,Y]]]/24
 | ||
|    *  http://en.wikipedia.org/wiki/Baker<65>Campbell<6C>Hausdorff_formula
 | ||
|    */
 | ||
|   template<class T>
 | ||
|   T BCH(const T& X, const T& Y) {
 | ||
|   	static const double _2 = 1. / 2., _12 = 1. / 12., _24 = 1. / 24.;
 | ||
|   	T X_Y = bracket(X, Y);
 | ||
|   	return X + Y + _2 * X_Y + _12 * bracket(X - Y, X_Y) - _24 * bracket(Y,
 | ||
|   			bracket(X, X_Y));
 | ||
|   }
 | ||
| 
 | ||
|   /**
 | ||
|    * Declaration of wedge (see Murray94book) used to convert
 | ||
|    * from n exponential coordinates to n*n element of the Lie algebra
 | ||
|    */
 | ||
|   template <class T> Matrix wedge(const Vector& x);
 | ||
| 
 | ||
|   /**
 | ||
|    * Exponential map given exponential coordinates
 | ||
|    * class T needs a wedge<> function and a constructor from Matrix
 | ||
|    * @param x exponential coordinates, vector of size n
 | ||
|    * @ return a T
 | ||
|    */
 | ||
|   template <class T>
 | ||
|   T expm(const Vector& x, int K=7) {
 | ||
|   	Matrix xhat = wedge<T>(x);
 | ||
|     return expm(xhat,K);
 | ||
|   }
 | ||
| 
 | ||
| } // namespace gtsam
 |