82 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			82 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file    testInferenceB.cpp
 | 
						|
 * @brief   Unit tests for functionality declared in inference.h
 | 
						|
 * @author  Frank Dellaert
 | 
						|
 */
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <gtsam/nonlinear/Symbol.h>
 | 
						|
#include <gtsam/linear/GaussianSequentialSolver.h>
 | 
						|
#include <gtsam/linear/GaussianMultifrontalSolver.h>
 | 
						|
#include <gtsam/slam/smallExample.h>
 | 
						|
#include <gtsam/slam/planarSLAM.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
// Convenience for named keys
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// The tests below test the *generic* inference algorithms. Some of these have
 | 
						|
// specialized versions in the derived classes GaussianFactorGraph etc...
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( inference, marginals )
 | 
						|
{
 | 
						|
  using namespace example;
 | 
						|
	// create and marginalize a small Bayes net on "x"
 | 
						|
  GaussianBayesNet cbn = createSmallGaussianBayesNet();
 | 
						|
  vector<Index> xvar; xvar.push_back(0);
 | 
						|
  GaussianBayesNet actual = *GaussianSequentialSolver(
 | 
						|
  		*GaussianSequentialSolver(GaussianFactorGraph(cbn)).jointFactorGraph(xvar)).eliminate();
 | 
						|
 | 
						|
  // expected is just scalar Gaussian on x
 | 
						|
  GaussianBayesNet expected = scalarGaussian(0, 4, sqrt(2.0));
 | 
						|
  CHECK(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( inference, marginals2)
 | 
						|
{
 | 
						|
	planarSLAM::Graph fg;
 | 
						|
  SharedDiagonal poseModel(sharedSigma(3, 0.1));
 | 
						|
  SharedDiagonal pointModel(sharedSigma(3, 0.1));
 | 
						|
 | 
						|
  fg.addPrior(X(0), Pose2(), poseModel);
 | 
						|
  fg.addOdometry(X(0), X(1), Pose2(1.0,0.0,0.0), poseModel);
 | 
						|
  fg.addOdometry(X(1), X(2), Pose2(1.0,0.0,0.0), poseModel);
 | 
						|
  fg.addBearingRange(X(0), L(0), Rot2(), 1.0, pointModel);
 | 
						|
  fg.addBearingRange(X(1), L(0), Rot2(), 1.0, pointModel);
 | 
						|
  fg.addBearingRange(X(2), L(0), Rot2(), 1.0, pointModel);
 | 
						|
 | 
						|
  Values init;
 | 
						|
  init.insert(X(0), Pose2(0.0,0.0,0.0));
 | 
						|
  init.insert(X(1), Pose2(1.0,0.0,0.0));
 | 
						|
  init.insert(X(2), Pose2(2.0,0.0,0.0));
 | 
						|
  init.insert(L(0), Point2(1.0,1.0));
 | 
						|
 | 
						|
  Ordering ordering(*fg.orderingCOLAMD(init));
 | 
						|
  FactorGraph<GaussianFactor>::shared_ptr gfg(fg.linearize(init, ordering));
 | 
						|
  GaussianMultifrontalSolver solver(*gfg);
 | 
						|
  solver.marginalFactor(ordering[L(0)]);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |