333 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  *      @file testOccupancyGrid.cpp
 | |
|  *      @date May 14, 2012
 | |
|  *      @author Brian Peasley
 | |
|  *      @author Frank Dellaert
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <gtsam/discrete/DiscreteFactorGraph.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <boost/random/mersenne_twister.hpp>
 | |
| //#include <boost/random/uniform_int_distribution.hpp>  // FIXME: does not exist in boost 1.46
 | |
| #include <boost/random/uniform_int.hpp> // Old header - should still exist
 | |
| 
 | |
| #include <vector>
 | |
| #include <stdlib.h>
 | |
| #include <math.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Laser Factor
 | |
|  * @brief factor that encodes a laser measurements likelihood.
 | |
|  */
 | |
| 
 | |
| class LaserFactor : public DiscreteFactor{
 | |
| private:
 | |
|   vector<Index>   m_cells;  ///cells in which laser passes through
 | |
| 
 | |
| public:
 | |
| 
 | |
|   ///constructor
 | |
|   LaserFactor(const vector<Index> &cells) : m_cells(cells) {}
 | |
| 
 | |
|   /**
 | |
|    * Find value for given assignment of values to variables
 | |
|    * return 1000 if any of the non-last cell is occupied and 1 otherwise
 | |
|    * Values contains all occupancy values (0 or 1)
 | |
|    */
 | |
|   virtual double operator()(const Values &vals) const{
 | |
| 
 | |
|     // loops through all but the last cell and checks that they are all 0.  Otherwise return 1000.
 | |
|     for(Index i = 0; i < m_cells.size() - 1; i++){
 | |
|       if(vals.at(m_cells[i]) == 1)
 | |
|         return 1000;
 | |
|     }
 | |
| 
 | |
|     // check if the last cell hit by the laser is 1.  return 900 otherwise.
 | |
|     if(vals.at(m_cells[m_cells.size() - 1]) == 0)
 | |
|       return 900;
 | |
| 
 | |
|     return 1;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   /// Multiply in a DecisionTreeFactor and return the result as DecisionTreeFactor
 | |
|   virtual DecisionTreeFactor operator*(const DecisionTreeFactor&) const{
 | |
|     throw runtime_error("operator * not implemented");
 | |
|   }
 | |
| 
 | |
|   virtual DecisionTreeFactor toDecisionTreeFactor() const{
 | |
|     throw runtime_error("DecisionTreeFactor toDecisionTreeFactor not implemented");
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * OccupancyGrid Class
 | |
|  * An occupancy grid is just a factor graph.
 | |
|  * Every cell in the occupancy grid is a variable in the factor graph.
 | |
|  * Measurements will create factors, as well as the prior.
 | |
|  */
 | |
| class OccupancyGrid : public DiscreteFactorGraph {
 | |
| private:
 | |
|   size_t      width_;    //number of cells wide the grid is
 | |
|   size_t      height_;  //number of cells tall the grid is
 | |
|   double      res_;    //the resolution at which the grid is created
 | |
| 
 | |
|   vector<Index>   cells_;      //list of keys of all cells in the grid
 | |
|   vector<Index>   laser_indices_; //indices of the laser factor in factors_
 | |
| 
 | |
| 
 | |
| public:
 | |
| 
 | |
|   size_t width() const {
 | |
|     return width_;
 | |
|   }
 | |
|   size_t height() const {
 | |
|     return height_;
 | |
|   }
 | |
|   // should we just not typedef Values Occupancy; ?
 | |
|   class Occupancy : public Values {
 | |
|   private:
 | |
|   public:
 | |
|   };
 | |
| 
 | |
| 
 | |
|   typedef std::vector<double> Marginals;
 | |
|   ///constructor
 | |
|   ///Creates a 2d grid of cells with the origin in the center of the grid
 | |
|   OccupancyGrid(double width, double height, double resolution){
 | |
|     width_     =   width/resolution;
 | |
|     height_   =   height/resolution;
 | |
|     res_    =  resolution;
 | |
| 
 | |
|     for(Index i = 0; i < cellCount(); i++)
 | |
|       cells_.push_back(i);
 | |
|   }
 | |
| 
 | |
|   /// Returns an empty occupancy grid of size width_ x height_
 | |
|   Occupancy emptyOccupancy(){
 | |
|     Occupancy    occupancy;    //mapping from Index to value (0 or 1)
 | |
|     for(size_t i = 0; i < cellCount(); i++)
 | |
|       occupancy.insert(pair<Index, size_t>((Index)i,0));
 | |
| 
 | |
|     return occupancy;
 | |
|   }
 | |
| 
 | |
|   ///add a prior
 | |
|   void addPosePrior(Index cell, double prior){
 | |
|     size_t numStates = 2;
 | |
|     DiscreteKey key(cell, numStates);
 | |
| 
 | |
|     //add a factor
 | |
|     vector<double> table(2);
 | |
|     table[0] = 1-prior;
 | |
|     table[1] = prior;
 | |
|     add(key, table);
 | |
|   }
 | |
| 
 | |
|   ///add a laser measurement
 | |
|   void addLaser(const Pose2 &pose, double range){
 | |
|     //ray trace from pose to range t//a >= 1 accept new stateo find all cells the laser passes through
 | |
|     double x = pose.x();    //start position of the laser
 | |
|     double y = pose.y();
 | |
|     double step = res_/8.0;  //amount to step in each iteration of laser traversal
 | |
| 
 | |
|     Index       key;
 | |
|     vector<Index>   cells;    //list of keys of cells hit by the laser
 | |
| 
 | |
|     //traverse laser
 | |
|     for(double i = 0; i < range; i += step){
 | |
|       //get point on laser
 | |
|       x = pose.x() + i*cos(pose.theta());
 | |
|       y = pose.y() + i*sin(pose.theta());
 | |
| 
 | |
|       //printf("%lf %lf\n", x, y);
 | |
|       //get the key of the cell that holds point (x,y)
 | |
|       key = keyLookup(x,y);
 | |
| 
 | |
|       //add cell to list of cells if it is new
 | |
|       if(i == 0 || key != cells[cells.size()-1])
 | |
|         cells.push_back(key);
 | |
|     }
 | |
| 
 | |
| //    for(size_t i = 0; i < cells.size(); i++)
 | |
| //      printf("%ld ", cells[i]);
 | |
| //    printf("\n");
 | |
| 
 | |
|     //add a factor that connects all those cells
 | |
|     laser_indices_.push_back(factors_.size());
 | |
|     push_back(boost::make_shared<LaserFactor>(cells));
 | |
| 
 | |
|   }
 | |
| 
 | |
|   /// returns the number of cells in the grid
 | |
|   size_t cellCount() const {
 | |
|     return width_*height_;
 | |
|   }
 | |
| 
 | |
|   /// returns the key of the cell in which point (x,y) lies.
 | |
|   Index keyLookup(double x, double y) const {
 | |
|     //move (x,y) to the nearest resolution
 | |
|     x *= (1.0/res_);
 | |
|     y *= (1.0/res_);
 | |
| 
 | |
|     //round to nearest integer
 | |
|     x = (double)((int)x);
 | |
|     y = (double)((int)y);
 | |
| 
 | |
|     //determine index
 | |
|     x += width_/2;
 | |
|     y = height_/2 - y;
 | |
| 
 | |
|     //bounds checking
 | |
|     size_t index = y*width_ + x;
 | |
|     index = index >= width_*height_ ? -1 : index;
 | |
| 
 | |
|     return cells_[index];
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * @brief Computes the value of a laser factor
 | |
|    * @param index defines which laser is to be used
 | |
|    * @param occupancy defines the grid which the laser will be evaulated with
 | |
|    * @ret a double value that is the value of the specified laser factor for the grid
 | |
|    */
 | |
|   double laserFactorValue(Index index, const Occupancy &occupancy) const{
 | |
|     return (*factors_[ laser_indices_[index] ])(occupancy);
 | |
|   }
 | |
| 
 | |
|   /// returns the sum of the laser factors for the current state of the grid
 | |
|   double operator()(const Occupancy &occupancy) const {
 | |
|     double value = 0;
 | |
| 
 | |
|     // loop over all laser factors in the graph
 | |
|     //printf("%ld\n", (*this).size());
 | |
| 
 | |
|     for(Index i = 0; i < laser_indices_.size(); i++){
 | |
|       value += laserFactorValue(i, occupancy);
 | |
|     }
 | |
| 
 | |
|     return value;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * @brief Run a metropolis sampler.
 | |
|    * @param iterations defines the number of iterations to run.
 | |
|    * @return  vector of marginal probabilities.
 | |
|    */
 | |
|   Marginals runMetropolis(size_t iterations){
 | |
|     Occupancy occupancy = emptyOccupancy();
 | |
| 
 | |
|     size_t size = cellCount();
 | |
|     Marginals marginals(size);
 | |
| 
 | |
|     // NOTE: using older interface for boost.random due to interface changes after boost 1.46
 | |
|     boost::mt19937 rng;
 | |
|     boost::uniform_int<Index> random_cell(0,size-1);
 | |
| 
 | |
|     // run Metropolis for the requested number of operations
 | |
|     // compute initial probability of occupancy grid, P(x_t)
 | |
| 
 | |
|     double Px = (*this)(occupancy);
 | |
| 
 | |
|     for(size_t it = 0; it < marginals.size(); it++)
 | |
|       marginals[it] = 0;
 | |
| 
 | |
|     for(size_t it = 0; it < iterations; it++){
 | |
|       //choose a random cell
 | |
|       Index x = random_cell(rng);
 | |
|       //printf("%ld:",x);
 | |
|       //flip the state of a random cell, x
 | |
|          occupancy[x] = 1 - occupancy[x];
 | |
| 
 | |
|       //compute probability of new occupancy grid, P(x')
 | |
|       //by summing over all LaserFactor::operator()
 | |
|          double Px_prime = (*this)(occupancy);
 | |
| 
 | |
|       //occupancy.print();
 | |
|       //calculate acceptance ratio, a
 | |
|         double a = Px_prime/Px;
 | |
| 
 | |
|       //if a <= 1 otherwise accept with probability a
 | |
|       //if we accept the new state P(x_t) = P(x')
 | |
|       //  printf(" %.3lf %.3lf\t", Px, Px_prime);
 | |
|         if(a <= 1){
 | |
|           Px = Px_prime;
 | |
|           //printf("\taccept\n");
 | |
|         }
 | |
|         else{
 | |
|            occupancy[x] = 1 - occupancy[x];
 | |
|           // printf("\treject\n");
 | |
|         }
 | |
| 
 | |
|       //increment the number of iterations each cell has been on
 | |
|         for(size_t i = 0; i < size; i++){
 | |
|           if(occupancy[i] == 1)
 | |
|             marginals[i]++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //compute the marginals
 | |
|     for(size_t it = 0; it < size; it++)
 | |
|       marginals[it] /= iterations;
 | |
| 
 | |
|     return marginals;
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST_UNSAFE( OccupancyGrid, Test1) {
 | |
|   //Build a small grid and test optimization
 | |
| 
 | |
|   //Build small grid
 | |
|   double width     =  3;     //meters
 | |
|   double height     =   2;     //meters
 | |
|   double resolution   =   0.5;   //meters
 | |
|   OccupancyGrid occupancyGrid(width, height, resolution); //default center to middle
 | |
| 
 | |
|   //Add measurements
 | |
|   Pose2 pose(0,0,0);
 | |
|   double range = 1;
 | |
| 
 | |
|   occupancyGrid.addPosePrior(0, 0.7);
 | |
|   EXPECT_LONGS_EQUAL(1, occupancyGrid.size());
 | |
| 
 | |
|   occupancyGrid.addLaser(pose, range);
 | |
|   EXPECT_LONGS_EQUAL(2, occupancyGrid.size());
 | |
| 
 | |
|   OccupancyGrid::Occupancy occupancy = occupancyGrid.emptyOccupancy();
 | |
|   EXPECT_LONGS_EQUAL(900, occupancyGrid.laserFactorValue(0,occupancy));
 | |
| 
 | |
| 
 | |
|   occupancy[16] = 1;
 | |
|   EXPECT_LONGS_EQUAL(1, occupancyGrid.laserFactorValue(0,occupancy));
 | |
| 
 | |
|   occupancy[15] = 1;
 | |
|   EXPECT_LONGS_EQUAL(1000, occupancyGrid.laserFactorValue(0,occupancy));
 | |
| 
 | |
|   occupancy[16] = 0;
 | |
|   EXPECT_LONGS_EQUAL(1000, occupancyGrid.laserFactorValue(0,occupancy));
 | |
| 
 | |
| 
 | |
|   //run MCMC
 | |
|   OccupancyGrid::Marginals occupancyMarginals = occupancyGrid.runMetropolis(50000);
 | |
|   EXPECT_LONGS_EQUAL( (width*height)/pow(resolution,2), occupancyMarginals.size());
 | |
| 
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |