424 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			424 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    DoglegOptimizer.h
 | |
|  * @brief   Unit tests for DoglegOptimizer
 | |
|  * @author  Richard Roberts
 | |
|  */
 | |
| 
 | |
| #include <tests/smallExample.h>
 | |
| #include <gtsam/nonlinear/DoglegOptimizerImpl.h>
 | |
| #include <gtsam/nonlinear/Symbol.h>
 | |
| #include <gtsam/linear/JacobianFactor.h>
 | |
| #include <gtsam/linear/GaussianSequentialSolver.h>
 | |
| #include <gtsam/linear/GaussianBayesTree.h>
 | |
| #include <gtsam/inference/BayesTree.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wunused-variable"
 | |
| #include <boost/bind.hpp>
 | |
| #pragma GCC diagnostic pop
 | |
| #include <boost/assign/list_of.hpp> // for 'list_of()'
 | |
| #include <functional>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| double computeError(const GaussianBayesNet& gbn, const LieVector& values) {
 | |
| 
 | |
|   // Convert Vector to VectorValues
 | |
|   VectorValues vv = *allocateVectorValues(gbn);
 | |
|   vv.vector() = values;
 | |
| 
 | |
|   // Convert to factor graph
 | |
|   GaussianFactorGraph gfg(gbn);
 | |
|   return gfg.error(vv);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| double computeErrorBt(const BayesTree<GaussianConditional>& gbt, const LieVector& values) {
 | |
| 
 | |
|   // Convert Vector to VectorValues
 | |
|   VectorValues vv = *allocateVectorValues(gbt);
 | |
|   vv.vector() = values;
 | |
| 
 | |
|   // Convert to factor graph
 | |
|   GaussianFactorGraph gfg(gbt);
 | |
|   return gfg.error(vv);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, ComputeSteepestDescentPoint) {
 | |
| 
 | |
|   // Create an arbitrary Bayes Net
 | |
|   GaussianBayesNet gbn;
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       0, Vector_(2, 1.0,2.0), Matrix_(2,2, 3.0,4.0,0.0,6.0),
 | |
|       3, Matrix_(2,2, 7.0,8.0,9.0,10.0),
 | |
|       4, Matrix_(2,2, 11.0,12.0,13.0,14.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       1, Vector_(2, 15.0,16.0), Matrix_(2,2, 17.0,18.0,0.0,20.0),
 | |
|       2, Matrix_(2,2, 21.0,22.0,23.0,24.0),
 | |
|       4, Matrix_(2,2, 25.0,26.0,27.0,28.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       2, Vector_(2, 29.0,30.0), Matrix_(2,2, 31.0,32.0,0.0,34.0),
 | |
|       3, Matrix_(2,2, 35.0,36.0,37.0,38.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       3, Vector_(2, 39.0,40.0), Matrix_(2,2, 41.0,42.0,0.0,44.0),
 | |
|       4, Matrix_(2,2, 45.0,46.0,47.0,48.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       4, Vector_(2, 49.0,50.0), Matrix_(2,2, 51.0,52.0,0.0,54.0), ones(2)));
 | |
| 
 | |
|   // Compute the Hessian numerically
 | |
|   Matrix hessian = numericalHessian(
 | |
|       boost::function<double(const LieVector&)>(boost::bind(&computeError, gbn, _1)),
 | |
|       LieVector(VectorValues::Zero(*allocateVectorValues(gbn)).vector()));
 | |
| 
 | |
|   // Compute the gradient numerically
 | |
|   VectorValues gradientValues = *allocateVectorValues(gbn);
 | |
|   Vector gradient = numericalGradient(
 | |
|       boost::function<double(const LieVector&)>(boost::bind(&computeError, gbn, _1)),
 | |
|       LieVector(VectorValues::Zero(gradientValues).vector()));
 | |
|   gradientValues.vector() = gradient;
 | |
| 
 | |
|   // Compute the gradient using dense matrices
 | |
|   Matrix augmentedHessian = GaussianFactorGraph(gbn).augmentedHessian();
 | |
|   LONGS_EQUAL(11, augmentedHessian.cols());
 | |
|   VectorValues denseMatrixGradient = *allocateVectorValues(gbn);
 | |
|   denseMatrixGradient.vector() = -augmentedHessian.col(10).segment(0,10);
 | |
|   EXPECT(assert_equal(gradientValues, denseMatrixGradient, 1e-5));
 | |
| 
 | |
|   // Compute the steepest descent point
 | |
|   double step = -gradient.squaredNorm() / (gradient.transpose() * hessian * gradient)(0);
 | |
|   VectorValues expected = gradientValues;  scal(step, expected);
 | |
| 
 | |
|   // Compute the steepest descent point with the dogleg function
 | |
|   VectorValues actual = optimizeGradientSearch(gbn);
 | |
| 
 | |
|   // Check that points agree
 | |
|   EXPECT(assert_equal(expected, actual, 1e-5));
 | |
| 
 | |
|   // Check that point causes a decrease in error
 | |
|   double origError = GaussianFactorGraph(gbn).error(VectorValues::Zero(*allocateVectorValues(gbn)));
 | |
|   double newError = GaussianFactorGraph(gbn).error(actual);
 | |
|   EXPECT(newError < origError);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, BT_BN_equivalency) {
 | |
| 
 | |
|   // Create an arbitrary Bayes Tree
 | |
|   BayesTree<GaussianConditional> bt;
 | |
|   bt.insert(BayesTree<GaussianConditional>::sharedClique(new BayesTree<GaussianConditional>::Clique(
 | |
|       GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|           boost::assign::pair_list_of
 | |
|           (2, Matrix_(6,2,
 | |
|               31.0,32.0,
 | |
|               0.0,34.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0))
 | |
|           (3, Matrix_(6,2,
 | |
|               35.0,36.0,
 | |
|               37.0,38.0,
 | |
|               41.0,42.0,
 | |
|               0.0,44.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0))
 | |
|           (4, Matrix_(6,2,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               45.0,46.0,
 | |
|               47.0,48.0,
 | |
|               51.0,52.0,
 | |
|               0.0,54.0)),
 | |
|           3, Vector_(6, 29.0,30.0,39.0,40.0,49.0,50.0), ones(6))))));
 | |
|   bt.insert(BayesTree<GaussianConditional>::sharedClique(new BayesTree<GaussianConditional>::Clique(
 | |
|       GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|           boost::assign::pair_list_of
 | |
|           (0, Matrix_(4,2,
 | |
|               3.0,4.0,
 | |
|               0.0,6.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0))
 | |
|           (1, Matrix_(4,2,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               17.0,18.0,
 | |
|               0.0,20.0))
 | |
|           (2, Matrix_(4,2,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               21.0,22.0,
 | |
|               23.0,24.0))
 | |
|           (3, Matrix_(4,2,
 | |
|               7.0,8.0,
 | |
|               9.0,10.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0))
 | |
|           (4, Matrix_(4,2,
 | |
|               11.0,12.0,
 | |
|               13.0,14.0,
 | |
|               25.0,26.0,
 | |
|               27.0,28.0)),
 | |
|           2, Vector_(4, 1.0,2.0,15.0,16.0), ones(4))))));
 | |
| 
 | |
|   // Create an arbitrary Bayes Net
 | |
|   GaussianBayesNet gbn;
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       0, Vector_(2, 1.0,2.0), Matrix_(2,2, 3.0,4.0,0.0,6.0),
 | |
|       3, Matrix_(2,2, 7.0,8.0,9.0,10.0),
 | |
|       4, Matrix_(2,2, 11.0,12.0,13.0,14.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       1, Vector_(2, 15.0,16.0), Matrix_(2,2, 17.0,18.0,0.0,20.0),
 | |
|       2, Matrix_(2,2, 21.0,22.0,23.0,24.0),
 | |
|       4, Matrix_(2,2, 25.0,26.0,27.0,28.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       2, Vector_(2, 29.0,30.0), Matrix_(2,2, 31.0,32.0,0.0,34.0),
 | |
|       3, Matrix_(2,2, 35.0,36.0,37.0,38.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       3, Vector_(2, 39.0,40.0), Matrix_(2,2, 41.0,42.0,0.0,44.0),
 | |
|       4, Matrix_(2,2, 45.0,46.0,47.0,48.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       4, Vector_(2, 49.0,50.0), Matrix_(2,2, 51.0,52.0,0.0,54.0), ones(2)));
 | |
| 
 | |
|   GaussianFactorGraph expected(gbn);
 | |
|   GaussianFactorGraph actual(bt);
 | |
| 
 | |
|   EXPECT(assert_equal(expected.augmentedHessian(), actual.augmentedHessian()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, ComputeSteepestDescentPointBT) {
 | |
| 
 | |
|   // Create an arbitrary Bayes Tree
 | |
|   BayesTree<GaussianConditional> bt;
 | |
|   bt.insert(BayesTree<GaussianConditional>::sharedClique(new BayesTree<GaussianConditional>::Clique(
 | |
|       GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|           boost::assign::pair_list_of
 | |
|           (2, Matrix_(6,2,
 | |
|               31.0,32.0,
 | |
|               0.0,34.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0))
 | |
|           (3, Matrix_(6,2,
 | |
|               35.0,36.0,
 | |
|               37.0,38.0,
 | |
|               41.0,42.0,
 | |
|               0.0,44.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0))
 | |
|           (4, Matrix_(6,2,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               45.0,46.0,
 | |
|               47.0,48.0,
 | |
|               51.0,52.0,
 | |
|               0.0,54.0)),
 | |
|           3, Vector_(6, 29.0,30.0,39.0,40.0,49.0,50.0), ones(6))))));
 | |
|   bt.insert(BayesTree<GaussianConditional>::sharedClique(new BayesTree<GaussianConditional>::Clique(
 | |
|       GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|           boost::assign::pair_list_of
 | |
|           (0, Matrix_(4,2,
 | |
|               3.0,4.0,
 | |
|               0.0,6.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0))
 | |
|           (1, Matrix_(4,2,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               17.0,18.0,
 | |
|               0.0,20.0))
 | |
|           (2, Matrix_(4,2,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0,
 | |
|               21.0,22.0,
 | |
|               23.0,24.0))
 | |
|           (3, Matrix_(4,2,
 | |
|               7.0,8.0,
 | |
|               9.0,10.0,
 | |
|               0.0,0.0,
 | |
|               0.0,0.0))
 | |
|           (4, Matrix_(4,2,
 | |
|               11.0,12.0,
 | |
|               13.0,14.0,
 | |
|               25.0,26.0,
 | |
|               27.0,28.0)),
 | |
|           2, Vector_(4, 1.0,2.0,15.0,16.0), ones(4))))));
 | |
| 
 | |
|   // Compute the Hessian numerically
 | |
|   Matrix hessian = numericalHessian(
 | |
|       boost::function<double(const LieVector&)>(boost::bind(&computeErrorBt, bt, _1)),
 | |
|       LieVector(VectorValues::Zero(*allocateVectorValues(bt)).vector()));
 | |
| 
 | |
|   // Compute the gradient numerically
 | |
|   VectorValues gradientValues = *allocateVectorValues(bt);
 | |
|   Vector gradient = numericalGradient(
 | |
|       boost::function<double(const LieVector&)>(boost::bind(&computeErrorBt, bt, _1)),
 | |
|       LieVector(VectorValues::Zero(gradientValues).vector()));
 | |
|   gradientValues.vector() = gradient;
 | |
| 
 | |
|   // Compute the gradient using dense matrices
 | |
|   Matrix augmentedHessian = GaussianFactorGraph(bt).augmentedHessian();
 | |
|   LONGS_EQUAL(11, augmentedHessian.cols());
 | |
|   VectorValues denseMatrixGradient = *allocateVectorValues(bt);
 | |
|   denseMatrixGradient.vector() = -augmentedHessian.col(10).segment(0,10);
 | |
|   EXPECT(assert_equal(gradientValues, denseMatrixGradient, 1e-5));
 | |
| 
 | |
|   // Compute the steepest descent point
 | |
|   double step = -gradient.squaredNorm() / (gradient.transpose() * hessian * gradient)(0);
 | |
|   VectorValues expected = gradientValues;  scal(step, expected);
 | |
| 
 | |
|   // Known steepest descent point from Bayes' net version
 | |
|   VectorValues expectedFromBN(5,2);
 | |
|   expectedFromBN[0] = Vector_(2, 0.000129034, 0.000688183);
 | |
|   expectedFromBN[1] = Vector_(2, 0.0109679, 0.0253767);
 | |
|   expectedFromBN[2] = Vector_(2, 0.0680441, 0.114496);
 | |
|   expectedFromBN[3] = Vector_(2, 0.16125, 0.241294);
 | |
|   expectedFromBN[4] = Vector_(2, 0.300134, 0.423233);
 | |
| 
 | |
|   // Compute the steepest descent point with the dogleg function
 | |
|   VectorValues actual = optimizeGradientSearch(bt);
 | |
| 
 | |
|   // Check that points agree
 | |
|   EXPECT(assert_equal(expected, actual, 1e-5));
 | |
|   EXPECT(assert_equal(expectedFromBN, actual, 1e-5));
 | |
| 
 | |
|   // Check that point causes a decrease in error
 | |
|   double origError = GaussianFactorGraph(bt).error(VectorValues::Zero(*allocateVectorValues(bt)));
 | |
|   double newError = GaussianFactorGraph(bt).error(actual);
 | |
|   EXPECT(newError < origError);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, ComputeBlend) {
 | |
|   // Create an arbitrary Bayes Net
 | |
|   GaussianBayesNet gbn;
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       0, Vector_(2, 1.0,2.0), Matrix_(2,2, 3.0,4.0,0.0,6.0),
 | |
|       3, Matrix_(2,2, 7.0,8.0,9.0,10.0),
 | |
|       4, Matrix_(2,2, 11.0,12.0,13.0,14.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       1, Vector_(2, 15.0,16.0), Matrix_(2,2, 17.0,18.0,0.0,20.0),
 | |
|       2, Matrix_(2,2, 21.0,22.0,23.0,24.0),
 | |
|       4, Matrix_(2,2, 25.0,26.0,27.0,28.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       2, Vector_(2, 29.0,30.0), Matrix_(2,2, 31.0,32.0,0.0,34.0),
 | |
|       3, Matrix_(2,2, 35.0,36.0,37.0,38.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       3, Vector_(2, 39.0,40.0), Matrix_(2,2, 41.0,42.0,0.0,44.0),
 | |
|       4, Matrix_(2,2, 45.0,46.0,47.0,48.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       4, Vector_(2, 49.0,50.0), Matrix_(2,2, 51.0,52.0,0.0,54.0), ones(2)));
 | |
| 
 | |
|   // Compute steepest descent point
 | |
|   VectorValues xu = optimizeGradientSearch(gbn);
 | |
| 
 | |
|   // Compute Newton's method point
 | |
|   VectorValues xn = optimize(gbn);
 | |
| 
 | |
|   // The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
 | |
|   EXPECT(xu.vector().norm() < xn.vector().norm());
 | |
| 
 | |
|   // Compute blend
 | |
|   double Delta = 1.5;
 | |
|   VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
 | |
|   DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, ComputeDoglegPoint) {
 | |
|   // Create an arbitrary Bayes Net
 | |
|   GaussianBayesNet gbn;
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       0, Vector_(2, 1.0,2.0), Matrix_(2,2, 3.0,4.0,0.0,6.0),
 | |
|       3, Matrix_(2,2, 7.0,8.0,9.0,10.0),
 | |
|       4, Matrix_(2,2, 11.0,12.0,13.0,14.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       1, Vector_(2, 15.0,16.0), Matrix_(2,2, 17.0,18.0,0.0,20.0),
 | |
|       2, Matrix_(2,2, 21.0,22.0,23.0,24.0),
 | |
|       4, Matrix_(2,2, 25.0,26.0,27.0,28.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       2, Vector_(2, 29.0,30.0), Matrix_(2,2, 31.0,32.0,0.0,34.0),
 | |
|       3, Matrix_(2,2, 35.0,36.0,37.0,38.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       3, Vector_(2, 39.0,40.0), Matrix_(2,2, 41.0,42.0,0.0,44.0),
 | |
|       4, Matrix_(2,2, 45.0,46.0,47.0,48.0), ones(2)));
 | |
|   gbn += GaussianConditional::shared_ptr(new GaussianConditional(
 | |
|       4, Vector_(2, 49.0,50.0), Matrix_(2,2, 51.0,52.0,0.0,54.0), ones(2)));
 | |
| 
 | |
|   // Compute dogleg point for different deltas
 | |
| 
 | |
|   double Delta1 = 0.5;  // Less than steepest descent
 | |
|   VectorValues actual1 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta1, optimizeGradientSearch(gbn), optimize(gbn));
 | |
|   DOUBLES_EQUAL(Delta1, actual1.vector().norm(), 1e-5);
 | |
| 
 | |
|   double Delta2 = 1.5;  // Between steepest descent and Newton's method
 | |
|   VectorValues expected2 = DoglegOptimizerImpl::ComputeBlend(Delta2, optimizeGradientSearch(gbn), optimize(gbn));
 | |
|   VectorValues actual2 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta2, optimizeGradientSearch(gbn), optimize(gbn));
 | |
|   DOUBLES_EQUAL(Delta2, actual2.vector().norm(), 1e-5);
 | |
|   EXPECT(assert_equal(expected2, actual2));
 | |
| 
 | |
|   double Delta3 = 5.0;  // Larger than Newton's method point
 | |
|   VectorValues expected3 = optimize(gbn);
 | |
|   VectorValues actual3 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta3, optimizeGradientSearch(gbn), optimize(gbn));
 | |
|   EXPECT(assert_equal(expected3, actual3));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(DoglegOptimizer, Iterate) {
 | |
|   // really non-linear factor graph
 | |
|   boost::shared_ptr<example::Graph> fg(new example::Graph(
 | |
|       example::createReallyNonlinearFactorGraph()));
 | |
| 
 | |
|   // config far from minimum
 | |
|   Point2 x0(3,0);
 | |
|   boost::shared_ptr<Values> config(new Values);
 | |
|   config->insert(X(1), x0);
 | |
| 
 | |
|   // ordering
 | |
|   boost::shared_ptr<Ordering> ord(new Ordering());
 | |
|   ord->push_back(X(1));
 | |
| 
 | |
|   double Delta = 1.0;
 | |
|   for(size_t it=0; it<10; ++it) {
 | |
|     GaussianSequentialSolver solver(*fg->linearize(*config, *ord));
 | |
|     GaussianBayesNet gbn = *solver.eliminate();
 | |
|     // Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
 | |
|     double nonlinearError = fg->error(*config);
 | |
|     double linearError = GaussianFactorGraph(gbn).error(VectorValues::Zero(*allocateVectorValues(gbn)));
 | |
|     DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
 | |
| //    cout << "it " << it << ", Delta = " << Delta << ", error = " << fg->error(*config) << endl;
 | |
|     DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, gbn, *fg, *config, *ord, fg->error(*config));
 | |
|     Delta = result.Delta;
 | |
|     EXPECT(result.f_error < fg->error(*config)); // Check that error decreases
 | |
|     Values newConfig(config->retract(result.dx_d, *ord));
 | |
|     (*config) = newConfig;
 | |
|     DOUBLES_EQUAL(fg->error(*config), result.f_error, 1e-5); // Check that error is correctly filled in
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |