294 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * testTriangulation.cpp
 | 
						|
 *
 | 
						|
 *  Created on: July 30th, 2013
 | 
						|
 *      Author: cbeall3
 | 
						|
 */
 | 
						|
 | 
						|
#include <gtsam_unstable/geometry/triangulation.h>
 | 
						|
#include <gtsam/geometry/Cal3Bundler.h>
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/assign.hpp>
 | 
						|
#include <boost/assign/std/vector.hpp>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
// Some common constants
 | 
						|
 | 
						|
static const boost::shared_ptr<Cal3_S2> sharedCal = //
 | 
						|
    boost::make_shared<Cal3_S2>(1500, 1200, 0, 640, 480);
 | 
						|
 | 
						|
// Looking along X-axis, 1 meter above ground plane (x-y)
 | 
						|
static const Rot3 upright = Rot3::ypr(-M_PI / 2, 0., -M_PI / 2);
 | 
						|
static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
 | 
						|
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
 | 
						|
 | 
						|
// create second camera 1 meter to the right of first camera
 | 
						|
static const Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
 | 
						|
PinholeCamera<Cal3_S2> camera2(pose2, *sharedCal);
 | 
						|
 | 
						|
// landmark ~5 meters infront of camera
 | 
						|
static const Point3 landmark(5, 0.5, 1.2);
 | 
						|
 | 
						|
// 1. Project two landmarks into two cameras and triangulate
 | 
						|
Point2 z1 = camera1.project(landmark);
 | 
						|
Point2 z2 = camera2.project(landmark);
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
TEST( triangulation, twoPoses) {
 | 
						|
 | 
						|
  vector<Pose3> poses;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  poses += pose1, pose2;
 | 
						|
  measurements += z1, z2;
 | 
						|
 | 
						|
  bool optimize = true;
 | 
						|
  double rank_tol = 1e-9;
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements, rank_tol, optimize);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
 | 
						|
 | 
						|
  // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
 | 
						|
  measurements.at(0) += Point2(0.1, 0.5);
 | 
						|
  measurements.at(1) += Point2(-0.2, 0.3);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements, rank_tol, optimize);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
 | 
						|
TEST( triangulation, twoPosesBundler) {
 | 
						|
 | 
						|
  boost::shared_ptr<Cal3Bundler> bundlerCal = //
 | 
						|
      boost::make_shared<Cal3Bundler>(1500, 0, 0, 640, 480);
 | 
						|
  PinholeCamera<Cal3Bundler> camera1(pose1, *bundlerCal);
 | 
						|
  PinholeCamera<Cal3Bundler> camera2(pose2, *bundlerCal);
 | 
						|
 | 
						|
  // 1. Project two landmarks into two cameras and triangulate
 | 
						|
  Point2 z1 = camera1.project(landmark);
 | 
						|
  Point2 z2 = camera2.project(landmark);
 | 
						|
 | 
						|
  vector<Pose3> poses;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  poses += pose1, pose2;
 | 
						|
  measurements += z1, z2;
 | 
						|
 | 
						|
  bool optimize = true;
 | 
						|
  double rank_tol = 1e-9;
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
 | 
						|
      bundlerCal, measurements, rank_tol, optimize);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
 | 
						|
 | 
						|
  // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
 | 
						|
  measurements.at(0) += Point2(0.1, 0.5);
 | 
						|
  measurements.at(1) += Point2(-0.2, 0.3);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
 | 
						|
      bundlerCal, measurements, rank_tol, optimize);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
TEST( triangulation, fourPoses) {
 | 
						|
  vector<Pose3> poses;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  poses += pose1, pose2;
 | 
						|
  measurements += z1, z2;
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
 | 
						|
 | 
						|
  // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
 | 
						|
  measurements.at(0) += Point2(0.1, 0.5);
 | 
						|
  measurements.at(1) += Point2(-0.2, 0.3);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark_noise = //
 | 
						|
      triangulatePoint3(poses, sharedCal, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
 | 
						|
 | 
						|
  // 3. Add a slightly rotated third camera above, again with measurement noise
 | 
						|
  Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
 | 
						|
  SimpleCamera camera3(pose3, *sharedCal);
 | 
						|
  Point2 z3 = camera3.project(landmark);
 | 
						|
 | 
						|
  poses += pose3;
 | 
						|
  measurements += z3 + Point2(0.1, -0.1);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_3cameras = //
 | 
						|
      triangulatePoint3(poses, sharedCal, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
 | 
						|
 | 
						|
  // Again with nonlinear optimization
 | 
						|
  boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(poses,
 | 
						|
      sharedCal, measurements, 1e-9, true);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
 | 
						|
 | 
						|
  // 4. Test failure: Add a 4th camera facing the wrong way
 | 
						|
  Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | 
						|
  SimpleCamera camera4(pose4, *sharedCal);
 | 
						|
 | 
						|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
 | 
						|
  CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
 | 
						|
 | 
						|
  poses += pose4;
 | 
						|
  measurements += Point2(400, 400);
 | 
						|
 | 
						|
  CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
 | 
						|
      TriangulationCheiralityException);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
TEST( triangulation, fourPoses_distinct_Ks) {
 | 
						|
  Cal3_S2 K1(1500, 1200, 0, 640, 480);
 | 
						|
  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | 
						|
  SimpleCamera camera1(pose1, K1);
 | 
						|
 | 
						|
  // create second camera 1 meter to the right of first camera
 | 
						|
  Cal3_S2 K2(1600, 1300, 0, 650, 440);
 | 
						|
  SimpleCamera camera2(pose2, K2);
 | 
						|
 | 
						|
  // 1. Project two landmarks into two cameras and triangulate
 | 
						|
  Point2 z1 = camera1.project(landmark);
 | 
						|
  Point2 z2 = camera2.project(landmark);
 | 
						|
 | 
						|
  vector<SimpleCamera> cameras;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  cameras += camera1, camera2;
 | 
						|
  measurements += z1, z2;
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark = //
 | 
						|
      triangulatePoint3(cameras, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
 | 
						|
 | 
						|
  // 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
 | 
						|
  measurements.at(0) += Point2(0.1, 0.5);
 | 
						|
  measurements.at(1) += Point2(-0.2, 0.3);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_landmark_noise = //
 | 
						|
      triangulatePoint3(cameras, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
 | 
						|
 | 
						|
  // 3. Add a slightly rotated third camera above, again with measurement noise
 | 
						|
  Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
 | 
						|
  Cal3_S2 K3(700, 500, 0, 640, 480);
 | 
						|
  SimpleCamera camera3(pose3, K3);
 | 
						|
  Point2 z3 = camera3.project(landmark);
 | 
						|
 | 
						|
  cameras += camera3;
 | 
						|
  measurements += z3 + Point2(0.1, -0.1);
 | 
						|
 | 
						|
  boost::optional<Point3> triangulated_3cameras = //
 | 
						|
      triangulatePoint3(cameras, measurements);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_3cameras, 1e-2));
 | 
						|
 | 
						|
  // Again with nonlinear optimization
 | 
						|
  boost::optional<Point3> triangulated_3cameras_opt = triangulatePoint3(cameras,
 | 
						|
      measurements, 1e-9, true);
 | 
						|
  EXPECT(assert_equal(landmark, *triangulated_3cameras_opt, 1e-2));
 | 
						|
 | 
						|
  // 4. Test failure: Add a 4th camera facing the wrong way
 | 
						|
  Pose3 pose4 = Pose3(Rot3::ypr(M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
 | 
						|
  Cal3_S2 K4(700, 500, 0, 640, 480);
 | 
						|
  SimpleCamera camera4(pose4, K4);
 | 
						|
 | 
						|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
 | 
						|
  CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
 | 
						|
 | 
						|
  cameras += camera4;
 | 
						|
  measurements += Point2(400, 400);
 | 
						|
  CHECK_EXCEPTION(triangulatePoint3(cameras, measurements),
 | 
						|
      TriangulationCheiralityException);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
TEST( triangulation, twoIdenticalPoses) {
 | 
						|
  // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | 
						|
  SimpleCamera camera1(pose1, *sharedCal);
 | 
						|
 | 
						|
  // 1. Project two landmarks into two cameras and triangulate
 | 
						|
  Point2 z1 = camera1.project(landmark);
 | 
						|
 | 
						|
  vector<Pose3> poses;
 | 
						|
  vector<Point2> measurements;
 | 
						|
 | 
						|
  poses += pose1, pose1;
 | 
						|
  measurements += z1, z1;
 | 
						|
 | 
						|
  CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
 | 
						|
      TriangulationUnderconstrainedException);
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
/*
 | 
						|
 TEST( triangulation, onePose) {
 | 
						|
 // we expect this test to fail with a TriangulationUnderconstrainedException
 | 
						|
 // because there's only one camera observation
 | 
						|
 | 
						|
 Cal3_S2 *sharedCal(1500, 1200, 0, 640, 480);
 | 
						|
 | 
						|
 vector<Pose3> poses;
 | 
						|
 vector<Point2> measurements;
 | 
						|
 | 
						|
 poses += Pose3();
 | 
						|
 measurements += Point2();
 | 
						|
 | 
						|
 CHECK_EXCEPTION(triangulatePoint3(poses, measurements, *sharedCal),
 | 
						|
 TriangulationUnderconstrainedException);
 | 
						|
 }
 | 
						|
 */
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
TEST( triangulation, TriangulationFactor ) {
 | 
						|
  // Create the factor with a measurement that is 3 pixels off in x
 | 
						|
  Key pointKey(1);
 | 
						|
  SharedNoiseModel model;
 | 
						|
  typedef TriangulationFactor<> Factor;
 | 
						|
  Factor factor(camera1, z1, model, pointKey, sharedCal);
 | 
						|
 | 
						|
  // Use the factor to calculate the Jacobians
 | 
						|
  Matrix HActual;
 | 
						|
  factor.evaluateError(landmark, HActual);
 | 
						|
 | 
						|
//  Matrix expectedH1 = numericalDerivative11<Pose3>(
 | 
						|
//      boost::bind(&EssentialMatrixConstraint::evaluateError, &factor, _1, pose2,
 | 
						|
//          boost::none, boost::none), pose1);
 | 
						|
  // The expected Jacobian
 | 
						|
  Matrix HExpected = numericalDerivative11<Point3>(
 | 
						|
      boost::bind(&Factor::evaluateError, &factor, _1, boost::none), landmark);
 | 
						|
 | 
						|
  // Verify the Jacobians are correct
 | 
						|
  CHECK(assert_equal(HExpected, HActual, 1e-3));
 | 
						|
}
 | 
						|
 | 
						|
//******************************************************************************
 | 
						|
int main() {
 | 
						|
  TestResult tr;
 | 
						|
  return TestRegistry::runAllTests(tr);
 | 
						|
}
 | 
						|
//******************************************************************************
 |