291 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /** 
 | |
|  * @file    testNonlinearOptimizer.cpp
 | |
|  * @brief   Unit tests for NonlinearOptimizer class
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <tests/smallExample.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/nonlinear/Symbol.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | |
| #include <gtsam/nonlinear/DoglegOptimizer.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/linear/GaussianFactorGraph.h>
 | |
| #include <gtsam/linear/NoiseModel.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| const double tol = 1e-5;
 | |
| 
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, iterateLM )
 | |
| {
 | |
|   // really non-linear factor graph
 | |
|   NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
 | |
| 
 | |
|   // config far from minimum
 | |
|   Point2 x0(3,0);
 | |
|   Values config;
 | |
|   config.insert(X(1), x0);
 | |
| 
 | |
|   // normal iterate
 | |
|   GaussNewtonParams gnParams;
 | |
|   GaussNewtonOptimizer gnOptimizer(fg, config, gnParams);
 | |
|   gnOptimizer.iterate();
 | |
| 
 | |
|   // LM iterate with lambda 0 should be the same
 | |
|   LevenbergMarquardtParams lmParams;
 | |
|   lmParams.lambdaInitial = 0.0;
 | |
|   LevenbergMarquardtOptimizer lmOptimizer(fg, config, lmParams);
 | |
|   lmOptimizer.iterate();
 | |
| 
 | |
|   CHECK(assert_equal(gnOptimizer.values(), lmOptimizer.values(), 1e-9));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, optimize )
 | |
| {
 | |
|   NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
 | |
| 
 | |
|   // test error at minimum
 | |
|   Point2 xstar(0,0);
 | |
|   Values cstar;
 | |
|   cstar.insert(X(1), xstar);
 | |
|   DOUBLES_EQUAL(0.0,fg.error(cstar),0.0);
 | |
| 
 | |
|   // test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
 | |
|   Point2 x0(3,3);
 | |
|   Values c0;
 | |
|   c0.insert(X(1), x0);
 | |
|   DOUBLES_EQUAL(199.0,fg.error(c0),1e-3);
 | |
| 
 | |
|   // optimize parameters
 | |
|   Ordering ord;
 | |
|   ord.push_back(X(1));
 | |
| 
 | |
|   // Gauss-Newton
 | |
|   GaussNewtonParams gnParams;
 | |
|   gnParams.ordering = ord;
 | |
|   Values actual1 = GaussNewtonOptimizer(fg, c0, gnParams).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual1),tol);
 | |
| 
 | |
|   // Levenberg-Marquardt
 | |
|   LevenbergMarquardtParams lmParams;
 | |
|   lmParams.ordering = ord;
 | |
|   Values actual2 = LevenbergMarquardtOptimizer(fg, c0, lmParams).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual2),tol);
 | |
| 
 | |
|   // Dogleg
 | |
|   DoglegParams dlParams;
 | |
|   dlParams.ordering = ord;
 | |
|   Values actual3 = DoglegOptimizer(fg, c0, dlParams).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual3),tol);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, SimpleLMOptimizer )
 | |
| {
 | |
|   NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
 | |
| 
 | |
|   Point2 x0(3,3);
 | |
|   Values c0;
 | |
|   c0.insert(X(1), x0);
 | |
| 
 | |
|   Values actual = LevenbergMarquardtOptimizer(fg, c0).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual),tol);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, SimpleGNOptimizer )
 | |
| {
 | |
|   NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
 | |
| 
 | |
|   Point2 x0(3,3);
 | |
|   Values c0;
 | |
|   c0.insert(X(1), x0);
 | |
| 
 | |
|   Values actual = GaussNewtonOptimizer(fg, c0).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual),tol);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, SimpleDLOptimizer )
 | |
| {
 | |
|   NonlinearFactorGraph fg(example::createReallyNonlinearFactorGraph());
 | |
| 
 | |
|   Point2 x0(3,3);
 | |
|   Values c0;
 | |
|   c0.insert(X(1), x0);
 | |
| 
 | |
|   Values actual = DoglegOptimizer(fg, c0).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual),tol);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, optimization_method )
 | |
| {
 | |
|   LevenbergMarquardtParams paramsQR;
 | |
|   paramsQR.linearSolverType = LevenbergMarquardtParams::MULTIFRONTAL_QR;
 | |
|   LevenbergMarquardtParams paramsChol;
 | |
|   paramsChol.linearSolverType = LevenbergMarquardtParams::MULTIFRONTAL_CHOLESKY;
 | |
| 
 | |
|   NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
 | |
| 
 | |
|   Point2 x0(3,3);
 | |
|   Values c0;
 | |
|   c0.insert(X(1), x0);
 | |
| 
 | |
|   Values actualMFQR = LevenbergMarquardtOptimizer(fg, c0, paramsQR).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actualMFQR),tol);
 | |
| 
 | |
|   Values actualMFChol = LevenbergMarquardtOptimizer(fg, c0, paramsChol).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actualMFChol),tol);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearOptimizer, Factorization )
 | |
| {
 | |
|   Values config;
 | |
|   config.insert(X(1), Pose2(0.,0.,0.));
 | |
|   config.insert(X(2), Pose2(1.5,0.,0.));
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph += PriorFactor<Pose2>(X(1), Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3, 1e-10));
 | |
|   graph += BetweenFactor<Pose2>(X(1),X(2), Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1));
 | |
| 
 | |
|   Ordering ordering;
 | |
|   ordering.push_back(X(1));
 | |
|   ordering.push_back(X(2));
 | |
| 
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, config, ordering);
 | |
|   optimizer.iterate();
 | |
| 
 | |
|   Values expected;
 | |
|   expected.insert(X(1), Pose2(0.,0.,0.));
 | |
|   expected.insert(X(2), Pose2(1.,0.,0.));
 | |
|   CHECK(assert_equal(expected, optimizer.values(), 1e-5));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(NonlinearOptimizer, NullFactor) {
 | |
| 
 | |
|   NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
 | |
| 
 | |
|   // Add null factor
 | |
|   fg.push_back(NonlinearFactorGraph::sharedFactor());
 | |
| 
 | |
|   // test error at minimum
 | |
|   Point2 xstar(0,0);
 | |
|   Values cstar;
 | |
|   cstar.insert(X(1), xstar);
 | |
|   DOUBLES_EQUAL(0.0,fg.error(cstar),0.0);
 | |
| 
 | |
|   // test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
 | |
|   Point2 x0(3,3);
 | |
|   Values c0;
 | |
|   c0.insert(X(1), x0);
 | |
|   DOUBLES_EQUAL(199.0,fg.error(c0),1e-3);
 | |
| 
 | |
|   // optimize parameters
 | |
|   Ordering ord;
 | |
|   ord.push_back(X(1));
 | |
| 
 | |
|   // Gauss-Newton
 | |
|   Values actual1 = GaussNewtonOptimizer(fg, c0, ord).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual1),tol);
 | |
| 
 | |
|   // Levenberg-Marquardt
 | |
|   Values actual2 = LevenbergMarquardtOptimizer(fg, c0, ord).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual2),tol);
 | |
| 
 | |
|   // Dogleg
 | |
|   Values actual3 = DoglegOptimizer(fg, c0, ord).optimize();
 | |
|   DOUBLES_EQUAL(0,fg.error(actual3),tol);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(NonlinearOptimizer, MoreOptimization) {
 | |
| 
 | |
|   NonlinearFactorGraph fg;
 | |
|   fg += PriorFactor<Pose2>(0, Pose2(0,0,0), noiseModel::Isotropic::Sigma(3,1));
 | |
|   fg += BetweenFactor<Pose2>(0, 1, Pose2(1,0,M_PI/2), noiseModel::Isotropic::Sigma(3,1));
 | |
|   fg += BetweenFactor<Pose2>(1, 2, Pose2(1,0,M_PI/2), noiseModel::Isotropic::Sigma(3,1));
 | |
| 
 | |
|   Values init;
 | |
|   init.insert(0, Pose2(3,4,-M_PI));
 | |
|   init.insert(1, Pose2(10,2,-M_PI));
 | |
|   init.insert(2, Pose2(11,7,-M_PI));
 | |
| 
 | |
|   Values expected;
 | |
|   expected.insert(0, Pose2(0,0,0));
 | |
|   expected.insert(1, Pose2(1,0,M_PI/2));
 | |
|   expected.insert(2, Pose2(1,1,M_PI));
 | |
| 
 | |
|   // Try LM and Dogleg
 | |
|   EXPECT(assert_equal(expected, LevenbergMarquardtOptimizer(fg, init).optimize()));
 | |
|   EXPECT(assert_equal(expected, DoglegOptimizer(fg, init).optimize()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(NonlinearOptimizer, MoreOptimizationWithHuber) {
 | |
| 
 | |
|   NonlinearFactorGraph fg;
 | |
|   fg += PriorFactor<Pose2>(0, Pose2(0,0,0), noiseModel::Isotropic::Sigma(3,1));
 | |
|   fg += BetweenFactor<Pose2>(0, 1, Pose2(1,0,M_PI/2),
 | |
|                               noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(2.0),
 | |
|                                                          noiseModel::Isotropic::Sigma(3,1)));
 | |
|   fg += BetweenFactor<Pose2>(1, 2, Pose2(1,0,M_PI/2),
 | |
|                               noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(3.0),
 | |
|                                                          noiseModel::Isotropic::Sigma(3,1)));
 | |
| 
 | |
|   Values init;
 | |
|   init.insert(0, Pose2(10,10,0));
 | |
|   init.insert(1, Pose2(1,0,M_PI));
 | |
|   init.insert(2, Pose2(1,1,-M_PI));
 | |
| 
 | |
|   Values expected;
 | |
|   expected.insert(0, Pose2(0,0,0));
 | |
|   expected.insert(1, Pose2(1,0,M_PI/2));
 | |
|   expected.insert(2, Pose2(1,1,M_PI));
 | |
| 
 | |
|   EXPECT(assert_equal(expected, GaussNewtonOptimizer(fg, init).optimize()));
 | |
|   EXPECT(assert_equal(expected, LevenbergMarquardtOptimizer(fg, init).optimize()));
 | |
|   EXPECT(assert_equal(expected, DoglegOptimizer(fg, init).optimize()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |