360 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			360 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file IMUKittiExampleGPS
 | 
						|
 * @brief Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BENCHMARK SUITE
 | 
						|
 * @author Ported by Thomas Jespersen (thomasj@tkjelectronics.dk), TKJ Electronics
 | 
						|
 */
 | 
						|
 | 
						|
// GTSAM related includes.
 | 
						|
#include <gtsam/navigation/CombinedImuFactor.h>
 | 
						|
#include <gtsam/navigation/GPSFactor.h>
 | 
						|
#include <gtsam/navigation/ImuFactor.h>
 | 
						|
#include <gtsam/slam/dataset.h>
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/nonlinear/ISAM2.h>
 | 
						|
#include <gtsam/nonlinear/ISAM2Params.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
 | 
						|
#include <cstring>
 | 
						|
#include <fstream>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
using symbol_shorthand::X;  // Pose3 (x,y,z,r,p,y)
 | 
						|
using symbol_shorthand::V;  // Vel   (xdot,ydot,zdot)
 | 
						|
using symbol_shorthand::B;  // Bias  (ax,ay,az,gx,gy,gz)
 | 
						|
 | 
						|
struct KittiCalibration {
 | 
						|
    double body_ptx;
 | 
						|
    double body_pty;
 | 
						|
    double body_ptz;
 | 
						|
    double body_prx;
 | 
						|
    double body_pry;
 | 
						|
    double body_prz;
 | 
						|
    double accelerometer_sigma;
 | 
						|
    double gyroscope_sigma;
 | 
						|
    double integration_sigma;
 | 
						|
    double accelerometer_bias_sigma;
 | 
						|
    double gyroscope_bias_sigma;
 | 
						|
    double average_delta_t;
 | 
						|
};
 | 
						|
 | 
						|
struct ImuMeasurement {
 | 
						|
    double time;
 | 
						|
    double dt;
 | 
						|
    Vector3 accelerometer;
 | 
						|
    Vector3 gyroscope;  // omega
 | 
						|
};
 | 
						|
 | 
						|
struct GpsMeasurement {
 | 
						|
    double time;
 | 
						|
    Vector3 position;  // x,y,z
 | 
						|
};
 | 
						|
 | 
						|
const string output_filename = "IMUKittiExampleGPSResults.csv";
 | 
						|
 | 
						|
void loadKittiData(KittiCalibration& kitti_calibration,
 | 
						|
                   vector<ImuMeasurement>& imu_measurements,
 | 
						|
                   vector<GpsMeasurement>& gps_measurements) {
 | 
						|
    string line;
 | 
						|
 | 
						|
    // Read IMU metadata and compute relative sensor pose transforms
 | 
						|
    // BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma GyroscopeSigma IntegrationSigma
 | 
						|
    // AccelerometerBiasSigma GyroscopeBiasSigma AverageDeltaT
 | 
						|
    string imu_metadata_file = findExampleDataFile("KittiEquivBiasedImu_metadata.txt");
 | 
						|
    ifstream imu_metadata(imu_metadata_file.c_str());
 | 
						|
 | 
						|
    printf("-- Reading sensor metadata\n");
 | 
						|
 | 
						|
    getline(imu_metadata, line, '\n');  // ignore the first line
 | 
						|
 | 
						|
    // Load Kitti calibration
 | 
						|
    getline(imu_metadata, line, '\n');
 | 
						|
    sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
 | 
						|
           &kitti_calibration.body_ptx,
 | 
						|
           &kitti_calibration.body_pty,
 | 
						|
           &kitti_calibration.body_ptz,
 | 
						|
           &kitti_calibration.body_prx,
 | 
						|
           &kitti_calibration.body_pry,
 | 
						|
           &kitti_calibration.body_prz,
 | 
						|
           &kitti_calibration.accelerometer_sigma,
 | 
						|
           &kitti_calibration.gyroscope_sigma,
 | 
						|
           &kitti_calibration.integration_sigma,
 | 
						|
           &kitti_calibration.accelerometer_bias_sigma,
 | 
						|
           &kitti_calibration.gyroscope_bias_sigma,
 | 
						|
           &kitti_calibration.average_delta_t);
 | 
						|
    printf("IMU metadata: %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n",
 | 
						|
           kitti_calibration.body_ptx,
 | 
						|
           kitti_calibration.body_pty,
 | 
						|
           kitti_calibration.body_ptz,
 | 
						|
           kitti_calibration.body_prx,
 | 
						|
           kitti_calibration.body_pry,
 | 
						|
           kitti_calibration.body_prz,
 | 
						|
           kitti_calibration.accelerometer_sigma,
 | 
						|
           kitti_calibration.gyroscope_sigma,
 | 
						|
           kitti_calibration.integration_sigma,
 | 
						|
           kitti_calibration.accelerometer_bias_sigma,
 | 
						|
           kitti_calibration.gyroscope_bias_sigma,
 | 
						|
           kitti_calibration.average_delta_t);
 | 
						|
 | 
						|
    // Read IMU data
 | 
						|
    // Time dt accelX accelY accelZ omegaX omegaY omegaZ
 | 
						|
    string imu_data_file = findExampleDataFile("KittiEquivBiasedImu.txt");
 | 
						|
    printf("-- Reading IMU measurements from file\n");
 | 
						|
    {
 | 
						|
        ifstream imu_data(imu_data_file.c_str());
 | 
						|
        getline(imu_data, line, '\n');  // ignore the first line
 | 
						|
 | 
						|
        double time = 0, dt = 0, acc_x = 0, acc_y = 0, acc_z = 0, gyro_x = 0, gyro_y = 0, gyro_z = 0;
 | 
						|
        while (!imu_data.eof()) {
 | 
						|
            getline(imu_data, line, '\n');
 | 
						|
            sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf",
 | 
						|
                   &time, &dt,
 | 
						|
                   &acc_x, &acc_y, &acc_z,
 | 
						|
                   &gyro_x, &gyro_y, &gyro_z);
 | 
						|
 | 
						|
            ImuMeasurement measurement;
 | 
						|
            measurement.time = time;
 | 
						|
            measurement.dt = dt;
 | 
						|
            measurement.accelerometer = Vector3(acc_x, acc_y, acc_z);
 | 
						|
            measurement.gyroscope = Vector3(gyro_x, gyro_y, gyro_z);
 | 
						|
            imu_measurements.push_back(measurement);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Read GPS data
 | 
						|
    // Time,X,Y,Z
 | 
						|
    string gps_data_file = findExampleDataFile("KittiGps_converted.txt");
 | 
						|
    printf("-- Reading GPS measurements from file\n");
 | 
						|
    {
 | 
						|
        ifstream gps_data(gps_data_file.c_str());
 | 
						|
        getline(gps_data, line, '\n');  // ignore the first line
 | 
						|
 | 
						|
        double time = 0, gps_x = 0, gps_y = 0, gps_z = 0;
 | 
						|
        while (!gps_data.eof()) {
 | 
						|
            getline(gps_data, line, '\n');
 | 
						|
            sscanf(line.c_str(), "%lf,%lf,%lf,%lf", &time, &gps_x, &gps_y, &gps_z);
 | 
						|
 | 
						|
            GpsMeasurement measurement;
 | 
						|
            measurement.time = time;
 | 
						|
            measurement.position = Vector3(gps_x, gps_y, gps_z);
 | 
						|
            gps_measurements.push_back(measurement);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char* argv[]) {
 | 
						|
    KittiCalibration kitti_calibration;
 | 
						|
    vector<ImuMeasurement> imu_measurements;
 | 
						|
    vector<GpsMeasurement> gps_measurements;
 | 
						|
    loadKittiData(kitti_calibration, imu_measurements, gps_measurements);
 | 
						|
 | 
						|
    Vector6 BodyP = (Vector6() << kitti_calibration.body_ptx, kitti_calibration.body_pty, kitti_calibration.body_ptz,
 | 
						|
                                  kitti_calibration.body_prx, kitti_calibration.body_pry, kitti_calibration.body_prz)
 | 
						|
                    .finished();
 | 
						|
    auto body_T_imu = Pose3::Expmap(BodyP);
 | 
						|
    if (!body_T_imu.equals(Pose3(), 1e-5)) {
 | 
						|
        printf("Currently only support IMUinBody is identity, i.e. IMU and body frame are the same");
 | 
						|
        exit(-1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Configure different variables
 | 
						|
    // double t_offset = gps_measurements[0].time;
 | 
						|
    size_t first_gps_pose = 1;
 | 
						|
    size_t gps_skip = 10;  // Skip this many GPS measurements each time
 | 
						|
    double g = 9.8;
 | 
						|
    auto w_coriolis = Vector3::Zero();  // zero vector
 | 
						|
 | 
						|
    // Configure noise models
 | 
						|
    auto noise_model_gps = noiseModel::Diagonal::Precisions((Vector6() << Vector3::Constant(0),
 | 
						|
                                                                          Vector3::Constant(1.0/0.07))
 | 
						|
                                                            .finished());
 | 
						|
 | 
						|
    // Set initial conditions for the estimated trajectory
 | 
						|
    // initial pose is the reference frame (navigation frame)
 | 
						|
    auto current_pose_global = Pose3(Rot3(), gps_measurements[first_gps_pose].position);
 | 
						|
    // the vehicle is stationary at the beginning at position 0,0,0
 | 
						|
    Vector3 current_velocity_global = Vector3::Zero();
 | 
						|
    auto current_bias = imuBias::ConstantBias();  // init with zero bias
 | 
						|
 | 
						|
    auto sigma_init_x = noiseModel::Diagonal::Precisions((Vector6() << Vector3::Constant(0),
 | 
						|
                                                                       Vector3::Constant(1.0))
 | 
						|
                                                         .finished());
 | 
						|
    auto sigma_init_v = noiseModel::Diagonal::Sigmas(Vector3::Constant(1000.0));
 | 
						|
    auto sigma_init_b = noiseModel::Diagonal::Sigmas((Vector6() << Vector3::Constant(0.100),
 | 
						|
                                                                   Vector3::Constant(5.00e-05))
 | 
						|
                                                     .finished());
 | 
						|
 | 
						|
    // Set IMU preintegration parameters
 | 
						|
    Matrix33 measured_acc_cov = I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
 | 
						|
    Matrix33 measured_omega_cov = I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
 | 
						|
    // error committed in integrating position from velocities
 | 
						|
    Matrix33 integration_error_cov = I_3x3 * pow(kitti_calibration.integration_sigma, 2);
 | 
						|
 | 
						|
    auto imu_params = PreintegratedImuMeasurements::Params::MakeSharedU(g);
 | 
						|
    imu_params->accelerometerCovariance = measured_acc_cov;     // acc white noise in continuous
 | 
						|
    imu_params->integrationCovariance = integration_error_cov;  // integration uncertainty continuous
 | 
						|
    imu_params->gyroscopeCovariance = measured_omega_cov;       // gyro white noise in continuous
 | 
						|
    imu_params->omegaCoriolis = w_coriolis;
 | 
						|
 | 
						|
    std::shared_ptr<PreintegratedImuMeasurements> current_summarized_measurement = nullptr;
 | 
						|
 | 
						|
    // Set ISAM2 parameters and create ISAM2 solver object
 | 
						|
    ISAM2Params isam_params;
 | 
						|
    isam_params.factorization = ISAM2Params::CHOLESKY;
 | 
						|
    isam_params.relinearizeSkip = 10;
 | 
						|
 | 
						|
    ISAM2 isam(isam_params);
 | 
						|
 | 
						|
    // Create the factor graph and values object that will store new factors and values to add to the incremental graph
 | 
						|
    NonlinearFactorGraph new_factors;
 | 
						|
    Values new_values;  // values storing the initial estimates of new nodes in the factor graph
 | 
						|
 | 
						|
    /// Main loop:
 | 
						|
    /// (1) we read the measurements
 | 
						|
    /// (2) we create the corresponding factors in the graph
 | 
						|
    /// (3) we solve the graph to obtain and optimal estimate of robot trajectory
 | 
						|
    printf("-- Starting main loop: inference is performed at each time step, but we plot trajectory every 10 steps\n");
 | 
						|
    size_t j = 0;
 | 
						|
    for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
 | 
						|
        // At each non=IMU measurement we initialize a new node in the graph
 | 
						|
        auto current_pose_key = X(i);
 | 
						|
        auto current_vel_key = V(i);
 | 
						|
        auto current_bias_key = B(i);
 | 
						|
        double t = gps_measurements[i].time;
 | 
						|
 | 
						|
        if (i == first_gps_pose) {
 | 
						|
            // Create initial estimate and prior on initial pose, velocity, and biases
 | 
						|
            new_values.insert(current_pose_key, current_pose_global);
 | 
						|
            new_values.insert(current_vel_key, current_velocity_global);
 | 
						|
            new_values.insert(current_bias_key, current_bias);
 | 
						|
            new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, current_pose_global, sigma_init_x);
 | 
						|
            new_factors.emplace_shared<PriorFactor<Vector3>>(current_vel_key, current_velocity_global, sigma_init_v);
 | 
						|
            new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(current_bias_key, current_bias, sigma_init_b);
 | 
						|
        } else {
 | 
						|
            double t_previous = gps_measurements[i-1].time;
 | 
						|
 | 
						|
            // Summarize IMU data between the previous GPS measurement and now
 | 
						|
            current_summarized_measurement = std::make_shared<PreintegratedImuMeasurements>(imu_params, current_bias);
 | 
						|
            static size_t included_imu_measurement_count = 0;
 | 
						|
            while (j < imu_measurements.size() && imu_measurements[j].time <= t) {
 | 
						|
                if (imu_measurements[j].time >= t_previous) {
 | 
						|
                    current_summarized_measurement->integrateMeasurement(imu_measurements[j].accelerometer,
 | 
						|
                                                                         imu_measurements[j].gyroscope,
 | 
						|
                                                                         imu_measurements[j].dt);
 | 
						|
                    included_imu_measurement_count++;
 | 
						|
                }
 | 
						|
                j++;
 | 
						|
            }
 | 
						|
 | 
						|
            // Create IMU factor
 | 
						|
            auto previous_pose_key = X(i-1);
 | 
						|
            auto previous_vel_key = V(i-1);
 | 
						|
            auto previous_bias_key = B(i-1);
 | 
						|
 | 
						|
            new_factors.emplace_shared<ImuFactor>(previous_pose_key, previous_vel_key,
 | 
						|
                                                  current_pose_key, current_vel_key,
 | 
						|
                                                  previous_bias_key, *current_summarized_measurement);
 | 
						|
 | 
						|
            // Bias evolution as given in the IMU metadata
 | 
						|
            auto sigma_between_b = noiseModel::Diagonal::Sigmas((Vector6() <<
 | 
						|
                   Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.accelerometer_bias_sigma),
 | 
						|
                   Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.gyroscope_bias_sigma))
 | 
						|
                 .finished());
 | 
						|
            new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(previous_bias_key,
 | 
						|
                                                                             current_bias_key,
 | 
						|
                                                                             imuBias::ConstantBias(),
 | 
						|
                                                                             sigma_between_b);
 | 
						|
 | 
						|
            // Create GPS factor
 | 
						|
            auto gps_pose = Pose3(current_pose_global.rotation(), gps_measurements[i].position);
 | 
						|
            if ((i % gps_skip) == 0) {
 | 
						|
                new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, gps_pose, noise_model_gps);
 | 
						|
                new_values.insert(current_pose_key, gps_pose);
 | 
						|
 | 
						|
                printf("################ POSE INCLUDED AT TIME %lf ################\n", t);
 | 
						|
                cout << gps_pose.translation();
 | 
						|
                printf("\n\n");
 | 
						|
            } else {
 | 
						|
                new_values.insert(current_pose_key, current_pose_global);
 | 
						|
            }
 | 
						|
 | 
						|
            // Add initial values for velocity and bias based on the previous estimates
 | 
						|
            new_values.insert(current_vel_key, current_velocity_global);
 | 
						|
            new_values.insert(current_bias_key, current_bias);
 | 
						|
 | 
						|
            // Update solver
 | 
						|
            // =======================================================================
 | 
						|
            // We accumulate 2*GPSskip GPS measurements before updating the solver at
 | 
						|
            // first so that the heading becomes observable.
 | 
						|
            if (i > (first_gps_pose + 2*gps_skip)) {
 | 
						|
                printf("################ NEW FACTORS AT TIME %lf ################\n", t);
 | 
						|
                new_factors.print();
 | 
						|
 | 
						|
                isam.update(new_factors, new_values);
 | 
						|
 | 
						|
                // Reset the newFactors and newValues list
 | 
						|
                new_factors.resize(0);
 | 
						|
                new_values.clear();
 | 
						|
 | 
						|
                // Extract the result/current estimates
 | 
						|
                Values result = isam.calculateEstimate();
 | 
						|
 | 
						|
                current_pose_global = result.at<Pose3>(current_pose_key);
 | 
						|
                current_velocity_global = result.at<Vector3>(current_vel_key);
 | 
						|
                current_bias = result.at<imuBias::ConstantBias>(current_bias_key);
 | 
						|
 | 
						|
                printf("\n################ POSE AT TIME %lf ################\n", t);
 | 
						|
                current_pose_global.print();
 | 
						|
                printf("\n\n");
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Save results to file
 | 
						|
    printf("\nWriting results to file...\n");
 | 
						|
    FILE* fp_out = fopen(output_filename.c_str(), "w+");
 | 
						|
    fprintf(fp_out, "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
 | 
						|
 | 
						|
    Values result = isam.calculateEstimate();
 | 
						|
    for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
 | 
						|
        auto pose_key = X(i);
 | 
						|
        auto vel_key = V(i);
 | 
						|
        auto bias_key = B(i);
 | 
						|
 | 
						|
        auto pose = result.at<Pose3>(pose_key);
 | 
						|
        auto velocity = result.at<Vector3>(vel_key);
 | 
						|
        auto bias = result.at<imuBias::ConstantBias>(bias_key);
 | 
						|
 | 
						|
        auto pose_quat = pose.rotation().toQuaternion();
 | 
						|
        auto gps = gps_measurements[i].position;
 | 
						|
 | 
						|
        cout << "State at #" << i << endl;
 | 
						|
        cout << "Pose:" << endl << pose << endl;
 | 
						|
        cout << "Velocity:" << endl << velocity << endl;
 | 
						|
        cout << "Bias:" << endl << bias << endl;
 | 
						|
 | 
						|
        fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
 | 
						|
                gps_measurements[i].time,
 | 
						|
                pose.x(), pose.y(), pose.z(),
 | 
						|
                pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(),
 | 
						|
                gps(0), gps(1), gps(2));
 | 
						|
    }
 | 
						|
 | 
						|
    fclose(fp_out);
 | 
						|
}
 |