145 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * DSF.h
 | |
|  *
 | |
|  *  Created on: Mar 26, 2010
 | |
|  *  Author: nikai
 | |
|  *  Description: An implementation of Disjoint set forests (see CLR page 446 and up)
 | |
|  *  						 Quoting from CLR: A disjoint-set data structure maintains a collection
 | |
|  * 							 S = {S_1,S_2,...} of disjoint dynamic sets. Each set is identified by
 | |
|  * 							 a representative, which is some member of the set.
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <list>
 | |
| #include <set>
 | |
| #include <map>
 | |
| #include <boost/foreach.hpp>
 | |
| #include "BTree.h"
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 	class Symbol;
 | |
| 
 | |
| 	template <class Key>
 | |
| 	class DSF : BTree<Key, Key> {
 | |
| 
 | |
| 	public:
 | |
| 		typedef Key Label; // label can be different from key, but for now they are same
 | |
| 		typedef DSF<Key> Self;
 | |
| 		typedef std::set<Key> Set;
 | |
| 		typedef BTree<Key, Label> Tree;
 | |
| 		typedef std::pair<Key, Label> KeyLabel;
 | |
| 
 | |
| 		// constructor
 | |
| 		DSF() : Tree() { }
 | |
| 
 | |
| 		// constructor
 | |
| 		DSF(const Tree& tree) : Tree(tree) {}
 | |
| 
 | |
| 		// constructor with a list of unconnected keys
 | |
| 		DSF(const std::list<Key>& keys) : Tree() { BOOST_FOREACH(const Key& key, keys) *this = this->add(key, key); }
 | |
| 
 | |
| 		// create a new singleton, does nothing if already exists
 | |
| 		Self makeSet(const Key& key) const { if (mem(key)) return *this; else return this->add(key, key); }
 | |
| 
 | |
| 		// find the label of the set in which {key} lives
 | |
| 		Label findSet(const Key& key) const {
 | |
| 			Key parent = this->find(key);
 | |
| 			return parent == key ? key : findSet(parent); }
 | |
| 
 | |
| 		// return a new DSF where x and y are in the same set. Kai: the caml implementation is not const, and I followed
 | |
| 		Self makeUnion(const Key& key1, const Key& key2) { return this->add(findSet_(key2), findSet_(key1));	}
 | |
| 
 | |
| 		// create a new singleton with two connected keys
 | |
| 		Self makePair(const Key& key1, const Key& key2) const { return makeSet(key1).makeSet(key2).makeUnion(key1, key2); }
 | |
| 
 | |
| 		// create a new singleton with a list of fully connected keys
 | |
| 		Self makeList(const std::list<Key>& keys) const {
 | |
| 			Self t = *this;
 | |
| 			BOOST_FOREACH(const Key& key, keys)
 | |
| 				t = t.makePair(key, keys.front());
 | |
| 			return t;
 | |
| 		}
 | |
| 
 | |
| 		// return a dsf in which all find_set operations will be O(1) due to path compression.
 | |
| 		DSF flatten() const {
 | |
| 			DSF t = *this;
 | |
| 			BOOST_FOREACH(const KeyLabel& pair, (Tree)t)
 | |
| 				t.findSet_(pair.first);
 | |
| 			return t;
 | |
| 		}
 | |
| 
 | |
| 		// maps f over all keys, must be invertible
 | |
| 		DSF map(boost::function<Key(const Key&)> func) const {
 | |
| 			DSF t;
 | |
| 			BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
 | |
| 				t = t.add(func(pair.first), func(pair.second));
 | |
| 			return t;
 | |
| 		}
 | |
| 
 | |
| 		// return the number of sets
 | |
| 		size_t numSets() const {
 | |
| 			size_t num = 0;
 | |
| 			BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
 | |
| 				if (pair.first == pair.second) num++;
 | |
| 			return num;
 | |
| 		}
 | |
| 
 | |
| 		// return the numer of keys
 | |
| 		size_t size() const { return Tree::size(); }
 | |
| 
 | |
| 		// return all sets, i.e. a partition of all elements
 | |
| 		std::map<Label, Set> sets() const {
 | |
| 			std::map<Label, Set> sets;
 | |
| 			BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
 | |
| 				sets[findSet(pair.second)].insert(pair.first);
 | |
| 			return sets;
 | |
| 		}
 | |
| 
 | |
| 		// return a partition of the given elements {keys}
 | |
| 		std::map<Label, Set> partition(const std::list<Key>& keys) const {
 | |
| 			std::map<Label, Set> partitions;
 | |
| 			BOOST_FOREACH(const Key& key, keys)
 | |
| 				partitions[findSet(key)].insert(key);
 | |
| 			return partitions;
 | |
| 		}
 | |
| 
 | |
| 		/** equality */
 | |
| 		bool operator==(const Self& t) const { return (Tree)*this == (Tree)t;	}
 | |
| 
 | |
| 		/** inequality */
 | |
| 		bool operator!=(const Self& t) const { return (Tree)*this != (Tree)t;	}
 | |
| 
 | |
| 		// print the object
 | |
| 		void print(const std::string& name = "DSF") const {
 | |
| 			std::cout << name << std::endl;
 | |
| 			BOOST_FOREACH(const KeyLabel& pair, (Tree)*this)
 | |
| 				std::cout << (std::string)pair.first << " " << (std::string)pair.second << std::endl;
 | |
| 		}
 | |
| 
 | |
| 	private:
 | |
| 
 | |
| 		/**
 | |
| 		 * same as findSet except with path compression: After we have traversed the path to
 | |
| 		 * the root, each parent pointer is made to directly point to it
 | |
| 		 */
 | |
| 		Key findSet_(const Key& key) {
 | |
| 			Key parent = this->find(key);
 | |
| 			if (parent == key)
 | |
| 				return parent;
 | |
| 			else {
 | |
| 				Key label = findSet_(parent);
 | |
| 				*this = this->add(key, label);
 | |
| 				return label;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	};
 | |
| 
 | |
| 	// shortcuts
 | |
| 	typedef DSF<int> DSFInt;
 | |
| 	typedef DSF<Symbol> DSFSymbol;
 | |
| 
 | |
| } // namespace gtsam
 |