396 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			396 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  *  Created on: Feb 3, 2010
 | |
|  *  @brief: purely functional binary tree
 | |
|  *  @Author: Chris Beall
 | |
|  *  @Author: Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <stack>
 | |
| #include <sstream>
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include <boost/function.hpp>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| 	/**
 | |
| 	 *  @brief Binary tree
 | |
| 	 */
 | |
| 	template<class Key, class Value>
 | |
| 	class BTree {
 | |
| 
 | |
| 	public:
 | |
| 
 | |
| 		typedef std::pair<Key, Value> value_type;
 | |
| 
 | |
| 	private:
 | |
| 
 | |
| 		/**
 | |
| 		 *  @brief Node in a tree
 | |
| 		 */
 | |
| 		struct Node {
 | |
| 
 | |
| 			const size_t height_;
 | |
| 			const value_type keyValue_;
 | |
| 			const BTree left, right;
 | |
| 
 | |
| 			/** default constructor */
 | |
| 			Node() {
 | |
| 			}
 | |
| 
 | |
| 			/**
 | |
| 			 * leaf node with height 1
 | |
| 			 */
 | |
| 			Node(const value_type& keyValue) :
 | |
| 				keyValue_(keyValue), height_(1) {
 | |
| 			}
 | |
| 
 | |
| 			/**
 | |
| 			 * Create a node from two subtrees and a key value pair
 | |
| 			 */
 | |
| 			Node(const BTree& l, const value_type& keyValue, const BTree& r) :
 | |
| 				left(l), keyValue_(keyValue), right(r),
 | |
| 				height_(l.height() >= r.height() ? l.height() + 1 : r.height() + 1) {
 | |
| 			}
 | |
| 
 | |
| 			inline const Key& key() const { return keyValue_.first;}
 | |
| 			inline const Value& value() const { return keyValue_.second;}
 | |
| 
 | |
| 		}; // Node
 | |
| 
 | |
| 		// We store a shared pointer to the root of the functional tree
 | |
| 		// composed of Node classes. If root_==NULL, the tree is empty.
 | |
| 		typedef boost::shared_ptr<const Node> sharedNode;
 | |
| 		sharedNode root_;
 | |
| 
 | |
| 		inline const value_type& keyValue() const { return root_->keyValue_;}
 | |
| 		inline const Key&        key()      const { return root_->key();    }
 | |
| 		inline const Value&      value()    const { return root_->value();  }
 | |
| 		inline const BTree&      left()     const { return root_->left;     }
 | |
| 		inline const BTree&      right()    const { return root_->right;    }
 | |
| 
 | |
| 		/** create a new balanced tree out of two trees and a key-value pair */
 | |
| 		static BTree balance(const BTree& l, const value_type& xd, const BTree& r) {
 | |
| 			size_t hl = l.height(), hr = r.height();
 | |
| 			if (hl > hr + 2) {
 | |
| 				const BTree& ll = l.left(), lr = l.right();
 | |
| 				if (ll.height() >= lr.height())
 | |
| 					return BTree(ll, l.keyValue(), BTree(lr, xd, r));
 | |
| 				else {
 | |
| 					BTree _left(ll, l.keyValue(), lr.left());
 | |
| 					BTree _right(lr.right(), xd, r);
 | |
| 					return BTree(_left, lr.keyValue(), _right);
 | |
| 				}
 | |
| 			} else if (hr > hl + 2) {
 | |
| 				const BTree& rl = r.left(), rr = r.right();
 | |
| 				if (rr.height() >= rl.height())
 | |
| 					return BTree(BTree(l, xd, rl), r.keyValue(), rr);
 | |
| 				else {
 | |
| 					BTree _left(l, xd, rl.left());
 | |
| 					BTree _right(rl.right(), r.keyValue(), rr);
 | |
| 					return BTree(_left, rl.keyValue(), _right);
 | |
| 				}
 | |
| 			} else
 | |
| 				return BTree(l, xd, r);
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 
 | |
| 		/** default constructor creates an empty tree */
 | |
| 		BTree() {
 | |
| 		}
 | |
| 
 | |
| 		/** copy constructor */
 | |
| 		BTree(const BTree& other) :
 | |
| 			root_(other.root_) {
 | |
| 		}
 | |
| 
 | |
| 		/** create leaf from key-value pair */
 | |
| 		BTree(const value_type& keyValue) :
 | |
| 			root_(new Node(keyValue)) {
 | |
| 		}
 | |
| 
 | |
| 		/** create from key-value pair and left, right subtrees */
 | |
| 		BTree(const BTree& l, const value_type& keyValue, const BTree& r) :
 | |
| 			root_(new Node(l, keyValue, r)) {
 | |
| 		}
 | |
| 
 | |
| 		/** Check whether tree is empty */
 | |
| 		bool empty() const {
 | |
| 			return !root_;
 | |
| 		}
 | |
| 
 | |
| 		/** add a key-value pair */
 | |
| 		BTree add(const value_type& xd) const {
 | |
| 			if (empty()) return BTree(xd);
 | |
| 			const Key& x = xd.first;
 | |
| 			if (x == key())
 | |
| 				return BTree(left(), xd, right());
 | |
| 			else if (x < key())
 | |
| 				return balance(left().add(xd), keyValue(), right());
 | |
| 			else
 | |
| 				return balance(left(), keyValue(), right().add(xd));
 | |
| 		}
 | |
| 
 | |
| 		/** add a key-value pair */
 | |
| 		BTree add(const Key& x, const Value& d) const {
 | |
| 			return add(make_pair(x, d));
 | |
| 		}
 | |
| 
 | |
| 		/** member predicate */
 | |
| 		bool mem(const Key& x) const {
 | |
| 			if (!root_) return false;
 | |
| 			if (x == key()) return true;
 | |
| 			if (x < key())
 | |
| 				return left().mem(x);
 | |
| 			else
 | |
| 				return right().mem(x);
 | |
| 		}
 | |
| 
 | |
| 		/** Check whether trees are *exactly* the same (occupy same memory) */
 | |
| 		inline bool same(const BTree& other) const {
 | |
| 			return (other.root_ == root_);
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 * Check whether trees are structurally the same,
 | |
| 		 * i.e., contain the same values in same tree-structure.
 | |
| 		 */
 | |
| 		bool operator==(const BTree& other) const {
 | |
| 			if (other.root_ == root_) return true; // if same, we're done
 | |
| 			if (empty() && !other.empty()) return false;
 | |
| 			if (!empty() && other.empty()) return false;
 | |
| 			// both non-empty, recurse: check this key-value pair and subtrees...
 | |
| 			return (keyValue() == other.keyValue()) && (left() == other.left())
 | |
| 					&& (right() == other.right());
 | |
| 		}
 | |
| 
 | |
| 		inline bool operator!=(const BTree& other) const {
 | |
| 			return !operator==(other);
 | |
| 		}
 | |
| 
 | |
| 		/** minimum key binding */
 | |
| 		const value_type& min() const {
 | |
| 			if (!root_) throw std::invalid_argument("BTree::min: empty tree");
 | |
| 			if (left().empty()) return keyValue();
 | |
| 			return left().min();
 | |
| 		}
 | |
| 
 | |
| 		/** remove minimum key binding */
 | |
| 		BTree remove_min() const {
 | |
| 			if (!root_) throw std::invalid_argument("BTree::remove_min: empty tree");
 | |
| 			if (left().empty()) return right();
 | |
| 			return balance(left().remove_min(), keyValue(), right());
 | |
| 		}
 | |
| 
 | |
| 		/** merge two trees */
 | |
| 		static BTree merge(const BTree& t1, const BTree& t2) {
 | |
| 			if (t1.empty()) return t2;
 | |
| 			if (t2.empty()) return t1;
 | |
| 			const value_type& xd = t2.min();
 | |
| 			return balance(t1, xd, t2.remove_min());
 | |
| 		}
 | |
| 
 | |
| 		/** remove a key-value pair */
 | |
| 		BTree remove(const Key& x) const {
 | |
| 			if (!root_) return BTree();
 | |
| 			if (x == key())
 | |
| 				return merge(left(), right());
 | |
| 			else if (x < key())
 | |
| 				return balance(left().remove(x), keyValue(), right());
 | |
| 			else
 | |
| 				return balance(left(), keyValue(), right().remove(x));
 | |
| 		}
 | |
| 
 | |
| 		/** Return height of the tree, 0 if empty */
 | |
| 		size_t height() const {
 | |
| 			return (root_ != NULL) ? root_->height_ : 0;
 | |
| 		}
 | |
| 
 | |
| 		/** return size of the tree */
 | |
| 		size_t size() const {
 | |
| 			if (!root_) return 0;
 | |
| 			return left().size() + 1 + right().size();
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 *  find a value given a key, throws exception when not found
 | |
| 		 *  Optimized non-recursive version as [find] is crucial for speed
 | |
| 		 */
 | |
| 		const Value& find(const Key& k) const {
 | |
| 			const Node* node = root_.get();
 | |
| 			while (node) {
 | |
| 				const Key& key = node->key();
 | |
| 				if      (k < key) node = node->left.root_.get();
 | |
| 				else if (key < k) node = node->right.root_.get();
 | |
| 				else /* (key() == k) */ return node->value();
 | |
| 			}
 | |
| 			//throw std::invalid_argument("BTree::find: key '" + (std::string) k + "' not found");
 | |
| 			throw std::invalid_argument("BTree::find: key not found");
 | |
| 		}
 | |
| 
 | |
| 		/** print in-order */
 | |
| 		void print(const std::string& s = "") const {
 | |
| 			if (empty()) return;
 | |
| 			Key k = key();
 | |
| 			std::stringstream ss;
 | |
| 			ss << height();
 | |
| 			k.print(s + ss.str() + " ");
 | |
| 			left().print(s + "L ");
 | |
| 			right().print(s + "R ");
 | |
| 		}
 | |
| 
 | |
| 		/** iterate over tree */
 | |
| 		void iter(boost::function<void(const Key&, const Value&)> f) const {
 | |
| 			if (!root_) return;
 | |
| 			left().iter(f);
 | |
| 			f(key(), value());
 | |
| 			right().iter(f);
 | |
| 		}
 | |
| 
 | |
| 		/** map key-values in tree over function f that computes a new value */
 | |
| 		template<class To>
 | |
| 		BTree<Key, To> map(boost::function<To(const Key&, const Value&)> f) const {
 | |
| 			if (empty()) return BTree<Key, To> ();
 | |
| 			std::pair<Key, To> xd(key(), f(key(), value()));
 | |
| 			return BTree<Key, To> (left().map(f), xd, right().map(f));
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 * t.fold(f,a) computes [(f kN dN ... (f k1 d1 a)...)],
 | |
| 		 * where [k1 ... kN] are the keys of all bindings in [m],
 | |
| 		 * and [d1 ... dN] are the associated data.
 | |
| 		 * The associated values are passed to [f] in reverse sort order
 | |
| 		 */
 | |
| 		template<class Acc>
 | |
| 		Acc fold(boost::function<Acc(const Key&, const Value&, const Acc&)> f,
 | |
| 				const Acc& a) const {
 | |
| 			if (!root_) return a;
 | |
| 			Acc ar = right().fold(f, a); // fold over right subtree
 | |
| 			Acc am = f(key(), value(), ar); // apply f with current value
 | |
| 			return left().fold(f, am); // fold over left subtree
 | |
| 		}
 | |
| 
 | |
| 		/**
 | |
| 		 *  @brief Const iterator
 | |
| 		 *  Not trivial: iterator keeps a stack to indicate current path from root_
 | |
| 		 */
 | |
| 		class const_iterator {
 | |
| 
 | |
| 		private:
 | |
| 
 | |
| 			typedef const_iterator Self;
 | |
| 			typedef std::pair<sharedNode, bool> flagged;
 | |
| 
 | |
| 			/** path to the iterator, annotated with flag */
 | |
| 			std::stack<flagged> path_;
 | |
| 
 | |
| 			const sharedNode& current() const {
 | |
| 				return path_.top().first;
 | |
| 			}
 | |
| 
 | |
| 			bool done() const {
 | |
| 				return path_.top().second;
 | |
| 			}
 | |
| 
 | |
| 			// The idea is we already iterated through the left-subtree and current key-value.
 | |
| 			// We now try pushing left subtree of right onto the stack. If there is no right
 | |
| 			// sub-tree, we pop this node of the stack and the parent becomes the iterator.
 | |
| 			// We avoid going down a right-subtree that was already visited by checking the flag.
 | |
| 			void increment() {
 | |
| 				if (path_.empty()) return;
 | |
| 				sharedNode t = current()->right.root_;
 | |
| 				if (!t || done()) {
 | |
| 					// no right subtree, iterator becomes first parent with a non-visited right subtree
 | |
| 					path_.pop();
 | |
| 					while (!path_.empty() && done())
 | |
| 						path_.pop();
 | |
| 				} else {
 | |
| 					path_.top().second = true; // flag we visited right
 | |
| 					// push right root and its left-most path onto the stack
 | |
| 					while (t) {
 | |
| 						path_.push(std::make_pair(t, false));
 | |
| 						t = t->left.root_;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		public:
 | |
| 
 | |
| 			// traits for playing nice with STL
 | |
| 			typedef ptrdiff_t difference_type; // correct ?
 | |
| 			typedef std::forward_iterator_tag iterator_category;
 | |
| 			typedef std::pair<Key, Value> value_type;
 | |
| 			typedef const value_type* pointer;
 | |
| 			typedef const value_type& reference;
 | |
| 
 | |
| 			/** initialize end */
 | |
| 			const_iterator() {
 | |
| 			}
 | |
| 
 | |
| 			/** initialize from root */
 | |
| 			const_iterator(const sharedNode& root) {
 | |
| 				sharedNode t = root;
 | |
| 				while (t) {
 | |
| 					path_.push(std::make_pair(t, false));
 | |
| 					t = t->left.root_;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/** equality */
 | |
| 			bool operator==(const Self& __x) const {
 | |
| 				return path_ == __x.path_;
 | |
| 			}
 | |
| 
 | |
| 			/** inequality */
 | |
| 			bool operator!=(const Self& __x) const {
 | |
| 				return path_ != __x.path_;
 | |
| 			}
 | |
| 
 | |
| 			/** dereference */
 | |
| 			reference operator*() const {
 | |
| 				if (path_.empty()) throw std::invalid_argument(
 | |
| 						"operator*: tried to dereference end");
 | |
| 				return current()->keyValue_;
 | |
| 			}
 | |
| 
 | |
| 			/** dereference */
 | |
| 			pointer operator->() const {
 | |
| 				if (path_.empty()) throw std::invalid_argument(
 | |
| 						"operator->: tried to dereference end");
 | |
| 				return &(current()->keyValue_);
 | |
| 			}
 | |
| 
 | |
| 			/** pre-increment */
 | |
| 			Self& operator++() {
 | |
| 				increment();
 | |
| 				return *this;
 | |
| 			}
 | |
| 
 | |
| 			/** post-increment */
 | |
| 			Self operator++(int) {
 | |
| 				Self __tmp = *this;
 | |
| 				increment();
 | |
| 				return __tmp;
 | |
| 			}
 | |
| 
 | |
| 		}; // const_iterator
 | |
| 
 | |
| 		// hack to make BTree work with BOOST_FOREACH
 | |
| 		// We do *not* want a non-const iterator
 | |
| 		typedef const_iterator iterator;
 | |
| 
 | |
| 		/** return iterator */
 | |
| 		const_iterator begin() const {
 | |
| 			return const_iterator(root_);
 | |
| 		}
 | |
| 
 | |
| 		/** return iterator */
 | |
| 		const_iterator end() const {
 | |
| 			return const_iterator();
 | |
| 		}
 | |
| 
 | |
| 	}; // BTree
 | |
| 
 | |
| } // namespace gtsam
 | |
| 
 |