450 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			450 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * @file testSQPOptimizer.cpp
 | |
|  * @brief tests the optimization algorithm for nonlinear graphs with nonlinear constraints
 | |
|  * @author Alex Cunningham
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| #include <boost/assign/std/map.hpp> // for insert
 | |
| #include <boost/bind.hpp>
 | |
| #include <Simulated2DMeasurement.h>
 | |
| #include <Simulated2DOdometry.h>
 | |
| #include <simulated2D.h>
 | |
| #include "NonlinearFactorGraph.h"
 | |
| #include "NonlinearConstraint.h"
 | |
| #include "NonlinearEquality.h"
 | |
| #include "VectorConfig.h"
 | |
| #include "Ordering.h"
 | |
| #include "NonlinearOptimizer.h"
 | |
| #include "SQPOptimizer.h"
 | |
| 
 | |
| // implementations
 | |
| #include "NonlinearConstraint-inl.h"
 | |
| #include "NonlinearOptimizer-inl.h"
 | |
| #include "SQPOptimizer-inl.h"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost::assign;
 | |
| 	
 | |
| // typedefs
 | |
| typedef boost::shared_ptr<VectorConfig> shared_config;
 | |
| typedef NonlinearFactorGraph<VectorConfig> NLGraph;
 | |
| typedef boost::shared_ptr<NonlinearFactor<VectorConfig> > shared;
 | |
| typedef boost::shared_ptr<NonlinearConstraint<VectorConfig> > shared_c;
 | |
| 
 | |
| TEST ( SQPOptimizer, basic ) {
 | |
| 	// create a basic optimizer
 | |
| 	NLGraph graph;
 | |
| 	Ordering ordering;
 | |
| 	shared_config config(new VectorConfig);
 | |
| 
 | |
| 	SQPOptimizer<NLGraph, VectorConfig> optimizer(graph, ordering, config);
 | |
| 
 | |
| 	// verify components
 | |
| 	CHECK(assert_equal(graph, *(optimizer.graph())));
 | |
| 	CHECK(assert_equal(ordering, *(optimizer.ordering())));
 | |
| 	CHECK(assert_equal(*config, *(optimizer.config())));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| // Example that moves two separate maps into the same frame of reference
 | |
| // Note that this is a linear example, so it should converge in one step
 | |
| /* ********************************************************************* */
 | |
| 
 | |
| namespace sqp_LinearMapWarp2 {
 | |
| // binary constraint between landmarks
 | |
| /** g(x) = x-y = 0 */
 | |
| Vector g_func(const VectorConfig& config, const list<string>& keys) {
 | |
| 	return config[keys.front()]-config[keys.back()];
 | |
| }
 | |
| 
 | |
| /** gradient at l1 */
 | |
| Matrix grad_g1(const VectorConfig& config, const list<string>& keys) {
 | |
| 	return eye(2);
 | |
| }
 | |
| 
 | |
| /** gradient at l2 */
 | |
| Matrix grad_g2(const VectorConfig& config, const list<string>& keys) {
 | |
| 	return -1*eye(2);
 | |
| }
 | |
| } // \namespace sqp_LinearMapWarp2
 | |
| 
 | |
| namespace sqp_LinearMapWarp1 {
 | |
| // Unary Constraint on x1
 | |
| /** g(x) = x -[1;1] = 0 */
 | |
| Vector g_func(const VectorConfig& config, const list<string>& keys) {
 | |
| 	return config[keys.front()]-Vector_(2, 1.0, 1.0);
 | |
| }
 | |
| 
 | |
| /** gradient at x1 */
 | |
| Matrix grad_g(const VectorConfig& config, const list<string>& keys) {
 | |
| 	return eye(2);
 | |
| }
 | |
| } // \namespace sqp_LinearMapWarp12
 | |
| 
 | |
| typedef SQPOptimizer<NLGraph, VectorConfig> Optimizer;
 | |
| 
 | |
| /**
 | |
|  * Creates the graph with each robot seeing the landmark, and it is
 | |
|  * known that it is the same landmark
 | |
|  */
 | |
| NLGraph linearMapWarpGraph() {
 | |
| 	// constant constraint on x1
 | |
| 	boost::shared_ptr<NonlinearConstraint1<VectorConfig> > c1(
 | |
| 			new NonlinearConstraint1<VectorConfig>(
 | |
| 					"x1", *sqp_LinearMapWarp1::grad_g,
 | |
| 					*sqp_LinearMapWarp1::g_func, 2, "L_x1"));
 | |
| 
 | |
| 	// measurement from x1 to l1
 | |
| 	Vector z1 = Vector_(2, 0.0, 5.0);
 | |
| 	double sigma1 = 0.1;
 | |
| 	shared f1(new Simulated2DMeasurement(z1, sigma1, "x1", "l1"));
 | |
| 
 | |
| 	// measurement from x2 to l2
 | |
| 	Vector z2 = Vector_(2, -4.0, 0.0);
 | |
| 	double sigma2 = 0.1;
 | |
| 	shared f2(new Simulated2DMeasurement(z2, sigma2, "x2", "l2"));
 | |
| 
 | |
| 	// equality constraint between l1 and l2
 | |
| 	boost::shared_ptr<NonlinearConstraint2<VectorConfig> > c2(
 | |
| 			new NonlinearConstraint2<VectorConfig>(
 | |
| 					"l1", *sqp_LinearMapWarp2::grad_g1,
 | |
| 					"l2", *sqp_LinearMapWarp2::grad_g2,
 | |
| 					*sqp_LinearMapWarp2::g_func, 2, "L_l1l2"));
 | |
| 
 | |
| 	// construct the graph
 | |
| 	NLGraph graph;
 | |
| 	graph.push_back(c1);
 | |
| 	graph.push_back(c2);
 | |
| 	graph.push_back(f1);
 | |
| 	graph.push_back(f2);
 | |
| 
 | |
| 	return graph;
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| TEST ( SQPOptimizer, map_warp_initLam ) {
 | |
| 	bool verbose = false;
 | |
| 	// get a graph
 | |
| 	NLGraph graph = linearMapWarpGraph();
 | |
| 
 | |
| 	// create an initial estimate
 | |
| 	shared_config initialEstimate(new VectorConfig);
 | |
| 	initialEstimate->insert("x1", Vector_(2, 1.0, 1.0));
 | |
| 	initialEstimate->insert("l1", Vector_(2, 1.0, 6.0));
 | |
| 	initialEstimate->insert("l2", Vector_(2, -4.0, 0.0)); // starting with a separate reference frame
 | |
| 	initialEstimate->insert("x2", Vector_(2, 0.0, 0.0)); // other pose starts at origin
 | |
| 
 | |
| 	// create an initial estimate for the lagrange multiplier
 | |
| 	shared_config initLagrange(new VectorConfig);
 | |
| 	initLagrange->insert("L_l1l2", Vector_(2, 1.0, 1.0));
 | |
| 	initLagrange->insert("L_x1", Vector_(2, 1.0, 1.0));
 | |
| 
 | |
| 	// create an ordering
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1", "x2", "l1", "l2", "L_l1l2", "L_x1";
 | |
| 
 | |
| 	// create an optimizer
 | |
| 	Optimizer optimizer(graph, ordering, initialEstimate, initLagrange);
 | |
| 	if (verbose) optimizer.print("Initialized Optimizer");
 | |
| 
 | |
| 	// perform an iteration of optimization
 | |
| 	Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT);
 | |
| 
 | |
| 	// get the config back out and verify
 | |
| 	VectorConfig actual = *(oneIteration.config());
 | |
| 	VectorConfig expected;
 | |
| 	expected.insert("x1", Vector_(2, 1.0, 1.0));
 | |
| 	expected.insert("l1", Vector_(2, 1.0, 6.0));
 | |
| 	expected.insert("l2", Vector_(2, 1.0, 6.0));
 | |
| 	expected.insert("x2", Vector_(2, 5.0, 6.0));
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| TEST ( SQPOptimizer, map_warp ) {
 | |
| 	bool verbose = false;
 | |
| 	// get a graph
 | |
| 	NLGraph graph = linearMapWarpGraph();
 | |
| 	if (verbose) graph.print("Initial map warp graph");
 | |
| 
 | |
| 	// create an initial estimate
 | |
| 	shared_config initialEstimate(new VectorConfig);
 | |
| 	initialEstimate->insert("x1", Vector_(2, 1.0, 1.0));
 | |
| 	initialEstimate->insert("l1", Vector_(2, 1.0, 6.0));
 | |
| 	initialEstimate->insert("l2", Vector_(2, -4.0, 0.0)); // starting with a separate reference frame
 | |
| 	initialEstimate->insert("x2", Vector_(2, 0.0, 0.0)); // other pose starts at origin
 | |
| 
 | |
| 	// create an ordering
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1", "x2", "l1", "l2";
 | |
| 
 | |
| 	// create an optimizer
 | |
| 	Optimizer optimizer(graph, ordering, initialEstimate);
 | |
| 
 | |
| 	// perform an iteration of optimization
 | |
| 	Optimizer oneIteration = optimizer.iterate(Optimizer::SILENT);
 | |
| 
 | |
| 	// get the config back out and verify
 | |
| 	VectorConfig actual = *(oneIteration.config());
 | |
| 	VectorConfig expected;
 | |
| 	expected.insert("x1", Vector_(2, 1.0, 1.0));
 | |
| 	expected.insert("l1", Vector_(2, 1.0, 6.0));
 | |
| 	expected.insert("l2", Vector_(2, 1.0, 6.0));
 | |
| 	expected.insert("x2", Vector_(2, 5.0, 6.0));
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| // This is an obstacle avoidance demo, where there is a trajectory of
 | |
| // three points, where there is a circular obstacle in the middle.  There
 | |
| // is a binary inequality constraint connecting the obstacle to the
 | |
| // states, which enforces a minimum distance.
 | |
| /* ********************************************************************* */
 | |
| 
 | |
| bool vector_compare(const std::string& key,
 | |
| 					const VectorConfig& feasible,
 | |
| 					const VectorConfig& input) {
 | |
| 	Vector feas, lin;
 | |
| 	feas = feasible[key];
 | |
| 	lin = input[key];
 | |
| 	return equal_with_abs_tol(lin, feas, 1e-5);
 | |
| }
 | |
| 
 | |
| typedef NonlinearConstraint1<VectorConfig> NLC1;
 | |
| typedef boost::shared_ptr<NLC1> shared_NLC1;
 | |
| typedef NonlinearConstraint2<VectorConfig> NLC2;
 | |
| typedef boost::shared_ptr<NLC2> shared_NLC2;
 | |
| typedef NonlinearEquality<VectorConfig> NLE;
 | |
| typedef boost::shared_ptr<NLE> shared_NLE;
 | |
| 
 | |
| namespace sqp_avoid1 {
 | |
| // avoidance radius
 | |
| double radius = 1.0;
 | |
| 
 | |
| // binary avoidance constraint
 | |
| /** g(x) = ||x2-obs||^2 - radius^2 > 0 */
 | |
| Vector g_func(const VectorConfig& config, const list<string>& keys) {
 | |
| 	Vector delta = config[keys.front()]-config[keys.back()];
 | |
| 	double dist2 = sum(emul(delta, delta));
 | |
| 	double thresh = radius*radius;
 | |
| 	return Vector_(1, dist2-thresh);
 | |
| }
 | |
| 
 | |
| /** gradient at pose */
 | |
| Matrix grad_g1(const VectorConfig& config, const list<string>& keys) {
 | |
| 	Vector x2 = config[keys.front()], obs = config[keys.back()];
 | |
| 	Vector grad = 2.0*(x2-obs);
 | |
| 	return Matrix_(1,2, grad(0), grad(1));
 | |
| }
 | |
| 
 | |
| /** gradient at obstacle */
 | |
| Matrix grad_g2(const VectorConfig& config, const list<string>& keys) {
 | |
| 	Vector x2 = config[keys.front()], obs = config[keys.back()];
 | |
| 	Vector grad = -2.0*(x2-obs);
 | |
| 	return Matrix_(1,2, grad(0), grad(1));
 | |
| }
 | |
| }
 | |
| 
 | |
| pair<NLGraph, VectorConfig> obstacleAvoidGraph() {
 | |
| 	// fix start, end, obstacle positions
 | |
| 	VectorConfig feasible;
 | |
| 	feasible.insert("x1", Vector_(2, 0.0, 0.0));
 | |
| 	feasible.insert("x3", Vector_(2, 10.0, 0.0));
 | |
| 	feasible.insert("obs", Vector_(2, 5.0, -0.5));
 | |
| 	shared_NLE e1(new NLE("x1", feasible, 2, *vector_compare));
 | |
| 	shared_NLE e2(new NLE("x3", feasible, 2, *vector_compare));
 | |
| 	shared_NLE e3(new NLE("obs", feasible, 2, *vector_compare));
 | |
| 
 | |
| 	// measurement from x1 to x2
 | |
| 	Vector x1x2 = Vector_(2, 5.0, 0.0);
 | |
| 	double sigma1 = 0.1;
 | |
| 	shared f1(new Simulated2DOdometry(x1x2, sigma1, "x1", "x2"));
 | |
| 
 | |
| 	// measurement from x2 to x3
 | |
| 	Vector x2x3 = Vector_(2, 5.0, 0.0);
 | |
| 	double sigma2 = 0.1;
 | |
| 	shared f2(new Simulated2DOdometry(x2x3, sigma2, "x2", "x3"));
 | |
| 
 | |
| 	// create a binary inequality constraint that forces the middle point away from
 | |
| 	//  the obstacle
 | |
| 	shared_NLC2 c1(new NLC2("x2", *sqp_avoid1::grad_g1,
 | |
| 						   "obs", *sqp_avoid1::grad_g2,
 | |
| 						   *sqp_avoid1::g_func, 1, "L_x2obs", false));
 | |
| 
 | |
| 	// construct the graph
 | |
| 	NLGraph graph;
 | |
| 	graph.push_back(e1);
 | |
| 	graph.push_back(e2);
 | |
| 	graph.push_back(e3);
 | |
| 	graph.push_back(c1);
 | |
| 	graph.push_back(f1);
 | |
| 	graph.push_back(f2);
 | |
| 
 | |
| 	return make_pair(graph, feasible);
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| TEST ( SQPOptimizer, inequality_avoid ) {
 | |
| 	// create the graph
 | |
| 	NLGraph graph; VectorConfig feasible;
 | |
| 	boost::tie(graph, feasible) = obstacleAvoidGraph();
 | |
| 
 | |
| 	// create the rest of the config
 | |
| 	shared_config init(new VectorConfig(feasible));
 | |
| 	init->insert("x2", Vector_(2, 5.0, 100.0));
 | |
| 
 | |
| 	// create an ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1", "x2", "x3", "obs";
 | |
| 
 | |
| 	// create an optimizer
 | |
| 	Optimizer optimizer(graph, ord, init);
 | |
| 
 | |
| 	// perform an iteration of optimization
 | |
| 	// NOTE: the constraint will be inactive in the first iteration,
 | |
| 	// so it will violate the constraint after one iteration
 | |
| 	Optimizer afterOneIteration = optimizer.iterate(Optimizer::SILENT);
 | |
| 
 | |
| 	VectorConfig exp1(feasible);
 | |
| 	exp1.insert("x2", Vector_(2, 5.0, 0.0));
 | |
| 	CHECK(assert_equal(exp1, *(afterOneIteration.config())));
 | |
| 
 | |
| 	// the second iteration will activate the constraint and force the
 | |
| 	// config to a viable configuration.
 | |
| 	Optimizer after2ndIteration = afterOneIteration.iterate(Optimizer::SILENT);
 | |
| 
 | |
| 	VectorConfig exp2(feasible);
 | |
| 	exp2.insert("x2", Vector_(2, 5.0, 0.5));
 | |
| 	CHECK(assert_equal(exp2, *(after2ndIteration.config())));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| TEST ( SQPOptimizer, inequality_avoid_iterative ) {
 | |
| 	// create the graph
 | |
| 	NLGraph graph; VectorConfig feasible;
 | |
| 	boost::tie(graph, feasible) = obstacleAvoidGraph();
 | |
| 
 | |
| 	// create the rest of the config
 | |
| 	shared_config init(new VectorConfig(feasible));
 | |
| 	init->insert("x2", Vector_(2, 5.0, 100.0));
 | |
| 
 | |
| 	// create an ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1", "x2", "x3", "obs";
 | |
| 
 | |
| 	// create an optimizer
 | |
| 	Optimizer optimizer(graph, ord, init);
 | |
| 
 | |
| 	double relThresh = 1e-5; // minimum change in error between iterations
 | |
| 	double absThresh = 1e-5; // minimum error necessary to converge
 | |
| 	double constraintThresh = 1e-9; // minimum constraint error to be feasible
 | |
| 	Optimizer final = optimizer.iterateSolve(relThresh, absThresh, constraintThresh);
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig exp2(feasible);
 | |
| 	exp2.insert("x2", Vector_(2, 5.0, 0.5));
 | |
| 	CHECK(assert_equal(exp2, *(final.config())));
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| // Use boost bind to parameterize the function
 | |
| namespace sqp_avoid2 {
 | |
| // binary avoidance constraint
 | |
| /** g(x) = ||x2-obs||^2 - radius^2 > 0 */
 | |
| Vector g_func(double radius, const VectorConfig& config, const list<string>& keys) {
 | |
| 	Vector delta = config[keys.front()]-config[keys.back()];
 | |
| 	double dist2 = sum(emul(delta, delta));
 | |
| 	double thresh = radius*radius;
 | |
| 	return Vector_(1, dist2-thresh);
 | |
| }
 | |
| 
 | |
| /** gradient at pose */
 | |
| Matrix grad_g1(const VectorConfig& config, const list<string>& keys) {
 | |
| 	Vector x2 = config[keys.front()], obs = config[keys.back()];
 | |
| 	Vector grad = 2.0*(x2-obs);
 | |
| 	return Matrix_(1,2, grad(0), grad(1));
 | |
| }
 | |
| 
 | |
| /** gradient at obstacle */
 | |
| Matrix grad_g2(const VectorConfig& config, const list<string>& keys) {
 | |
| 	Vector x2 = config[keys.front()], obs = config[keys.back()];
 | |
| 	Vector grad = -2.0*(x2-obs);
 | |
| 	return Matrix_(1,2, grad(0), grad(1));
 | |
| }
 | |
| }
 | |
| 
 | |
| pair<NLGraph, VectorConfig> obstacleAvoidGraphGeneral() {
 | |
| 	// fix start, end, obstacle positions
 | |
| 	VectorConfig feasible;
 | |
| 	feasible.insert("x1", Vector_(2, 0.0, 0.0));
 | |
| 	feasible.insert("x3", Vector_(2, 10.0, 0.0));
 | |
| 	feasible.insert("obs", Vector_(2, 5.0, -0.5));
 | |
| 	shared_NLE e1(new NLE("x1", feasible, 2, *vector_compare));
 | |
| 	shared_NLE e2(new NLE("x3", feasible, 2, *vector_compare));
 | |
| 	shared_NLE e3(new NLE("obs", feasible, 2, *vector_compare));
 | |
| 
 | |
| 	// measurement from x1 to x2
 | |
| 	Vector x1x2 = Vector_(2, 5.0, 0.0);
 | |
| 	double sigma1 = 0.1;
 | |
| 	shared f1(new Simulated2DOdometry(x1x2, sigma1, "x1", "x2"));
 | |
| 
 | |
| 	// measurement from x2 to x3
 | |
| 	Vector x2x3 = Vector_(2, 5.0, 0.0);
 | |
| 	double sigma2 = 0.1;
 | |
| 	shared f2(new Simulated2DOdometry(x2x3, sigma2, "x2", "x3"));
 | |
| 
 | |
| 	double radius = 1.0;
 | |
| 
 | |
| 	// create a binary inequality constraint that forces the middle point away from
 | |
| 	//  the obstacle
 | |
| 	shared_NLC2 c1(new NLC2("x2", boost::bind(sqp_avoid2::grad_g1, _1, _2),
 | |
| 						   "obs", boost::bind(sqp_avoid2::grad_g2, _1, _2),
 | |
| 						   boost::bind(sqp_avoid2::g_func, radius, _1, _2), 1, "L_x2obs", false));
 | |
| 
 | |
| 	// construct the graph
 | |
| 	NLGraph graph;
 | |
| 	graph.push_back(e1);
 | |
| 	graph.push_back(e2);
 | |
| 	graph.push_back(e3);
 | |
| 	graph.push_back(c1);
 | |
| 	graph.push_back(f1);
 | |
| 	graph.push_back(f2);
 | |
| 
 | |
| 	return make_pair(graph, feasible);
 | |
| }
 | |
| 
 | |
| /* ********************************************************************* */
 | |
| TEST ( SQPOptimizer, inequality_avoid_iterative_bind ) {
 | |
| 	// create the graph
 | |
| 	NLGraph graph; VectorConfig feasible;
 | |
| 	boost::tie(graph, feasible) = obstacleAvoidGraphGeneral();
 | |
| 
 | |
| 	// create the rest of the config
 | |
| 	shared_config init(new VectorConfig(feasible));
 | |
| 	init->insert("x2", Vector_(2, 5.0, 100.0));
 | |
| 
 | |
| 	// create an ordering
 | |
| 	Ordering ord;
 | |
| 	ord += "x1", "x2", "x3", "obs";
 | |
| 
 | |
| 	// create an optimizer
 | |
| 	Optimizer optimizer(graph, ord, init);
 | |
| 
 | |
| 	double relThresh = 1e-5; // minimum change in error between iterations
 | |
| 	double absThresh = 1e-5; // minimum error necessary to converge
 | |
| 	double constraintThresh = 1e-9; // minimum constraint error to be feasible
 | |
| 	Optimizer final = optimizer.iterateSolve(relThresh, absThresh, constraintThresh);
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig exp2(feasible);
 | |
| 	exp2.insert("x2", Vector_(2, 5.0, 0.5));
 | |
| 	CHECK(assert_equal(exp2, *(final.config())));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |